Method Article
We describe a protocol for colorimetric detection of E. coli using a modified litmus test that takes advantage of an RNA-cleaving DNAzyme, urease, and magnetic beads.
There are increasing demands for simple but still effective methods that can be used to detect specific pathogens for point-of-care or field applications. Such methods need to be user-friendly and produce reliable results that can be easily interpreted by both specialists and non-professionals. The litmus test for pH is simple, quick, and effective as it reports the pH of a test sample via a simple color change. We have developed an approach to take advantage of the litmus test for bacterial detection. The method exploits a bacterium-specific RNA-cleaving DNAzyme to achieve two functions: recognizing a bacterium of interest and providing a mechanism to control the activity of urease. Through the use of magnetic beads immobilized with a DNAzyme-urease conjugate, the presence of bacteria in a test sample is relayed to the release of urease from beads to solution. The released urease is transferred to a test solution to hydrolyze urea into ammonia, resulting in an increase of pH that can be visualized using the classic litmus test.
Bacterial pathogens are one of the major causes of global morbidity and mortality. Outbreaks from hospital-acquired infections, food-borne pathogens, and bacterial contaminants in the environment pose serious and on-going threats to public health and safety. To prevent these outbreaks, effective tools are needed that permit pathogen detection in a timely fashion under a variety of settings. Simple but still effective tests that are portable and cost-effective are greatly coveted, especially in regions that are susceptible to outbreaks but cannot afford expensive testing facilities.1-3 Although there exists a multitude of methods to detect bacteria, many of them are not suitable as screening or on-site testing tools because they require long test times, expensive instruments and complicated testing procedures.
Colorimetric tests are particularly attractive for point-of-care or field applications as color changes can be easily detected by the naked eye. The litmus test for pH is simple, quick, and effective. Although it is a very old technology, it is still widely used today because of its simplicity and effectiveness. Surprisingly, this simple test had never been modified to achieve the detection of other analytes before we recently developed an approach of modifying this test for E. coli testing.4
The expanded litmus test for E. coli employs three additional components: an E. coli activated RNA-cleaving DNAzyme (EC1), 5 urease, and magnetic beads. DNAzymes refer to synthetic single-stranded DNA molecules with catalytic activity.6 They can be isolated from random-sequence DNA pools using in vitro selection.7,8 They are highly stable and can be produced cost-effectively using high-efficiency automated DNA synthesis.9 For these reasons, DNAzymes, particularly RNA-cleaving DNAzymes, have been widely examined for biosensing applications.6,10,11 RNA-cleaving DNAzyme sensors have been developed to detect metal ions,12-16 small molecules,17,18 bacterial pathogens5,19-21 and cancer cells.22 Given the great availability of target-induced RNA-cleaving DNAzymes, any assay that utilizes a DNAzyme can be potentially expanded to detect a diverse range of analytes.
Urease is chosen for its ability to hydrolyze urea into ammonia,23,24 resulting in a pH increase. Urease is also highly efficient, stable and amenable for conjugation to other biomolecules. Therefore, we postulated that a conjugate of an RNA-cleavage DNAzyme with urease would allow the use of litmus test for the detection of other targets.5
The action of the RNA-cleaving DNAzyme is relayed to urease-mediated increase of pH through the use of magnetic beads that are immobilized with the DNAzyme-urease conjugate. Because the activity of the DNAzyme under investigation is strictly dependent on E. coli, the presence of this bacterium in the test solution will result in the release of urease from the magnetic beads to the solution, which is then taken and used to hydrolyze urea in a reporter solution that contains a pH-sensitive dye. The final outcome of this procedure is a color change that can be conveniently reported by the dye or pH paper.
1.试剂和缓冲液的制备
2.合成和E的纯化coli-响应核酶EC1
3.尿素酶的DNA的共轭
4. EC1和UrDNA装配到磁珠
5.制备细菌细胞20的
6.试金石
细菌石蕊试验的原理在图1中说明的测试使用了三个关键材料:由一特定细菌酶,脲酶和磁珠活化的RNA切割核酶。所述核酶被用作分子识别元件,以实现所关注的细菌具有高度特异性的检测。脲酶和磁性珠粒用来实现DNA核酶的RNA的切割活性的信号转导。这涉及含有尿素酶结合物核酶磁珠的创建。在目标细菌的存在,所述核酶裂解其RNA的联动。这个动作引起脲酶从磁珠的解离。被释放的尿素酶可以从磁珠容易分离并用于产生在一个记者溶液,其中包含脲和pH敏感染料的颜色变化。尿素酶水解尿素成氨,伴随着触发℃pH值的增加染料的olor变化。
图2给出细菌试金石EC1的地方,一个E.大肠杆菌响应性的RNA切割核酶,用作核酶和酚红被用作pH值报告染料。 EC1先前由我们的组使用体外选择的技术中一个随机序列的DNA池隔离。5我们先前的研究已经表明,EC1为大肠杆菌高度特异性大肠杆菌和表现出最小的活动对其他细菌。5,19业已发现,EC1由来自大肠杆菌的蛋白质分子活化大肠杆菌。虽然这种蛋白质生物标记的身份还没有被破译,高识别特异性表明,这种蛋白是唯一的大肠杆菌大肠杆菌 。记者溶液被设置为具有5.5的初始pH值。在此pH,酚红呈现黄色。作为脲酶水解尿素成氨,记者溶胶的碱度ution增加。这是通过颜色从黄色到粉红色逐渐变化反映出来。颜色变化的深度依赖于以下两个参数,通过图2所示: 大肠杆菌的数量在核酶活化步骤和所允许的尿素水解步骤时所使用的大肠杆菌细胞。更多E.大肠杆菌细胞产生了更强的色彩变化,通过一个渐进的黄色到粉红色过渡时E.观察反映大肠杆菌细胞被连续从增加的5至5×10 7(10倍,每次增加)。同时,允许用于检测大肠杆菌的人数较少的尿素水解的时间较长大肠杆菌细胞(5,000个细胞在1小时的反应和500个细胞在2小时的反应)。
细菌石蕊测试的pH值的变化,也可以使用手持式pH计监测和代表性的结果在图3中示出。这WA作者发现10 7 E.存在的大肠杆菌细胞产生了由3个单位在10分钟内pH值的逐渐增加。与此相反,不存在E的大肠杆菌细胞没有造成相同的设置下可检测的pH变化。
图1: 细菌试金石的设计原理 (A)由感兴趣的细菌的生物标志物特定的RNA裂解脱氧核酶的激活。在生物标志物的存在下,该RNA切割核酶固定于磁珠裂解RNA的联动,导致从磁性珠溶液中标记的脲酶的释放。 (B)的三步骤检测程序。第1步:激活核酶,如面板A.步骤2中所述:磁选 - 释放的脲酶是从磁珠分离。第3步:尿素水解 - [R12;被释放的尿素酶加入到一个含脲 - 报道溶液。尿素酶水解尿素成氨,导致pH的变化,可以通过pH敏感的染料进行报告。 请点击此处查看该图的放大版本。
图 2:E. 试金石 使用 大肠杆菌 E.大肠杆菌 响应性脱氧核酶EC1代表性的颜色变化结果与大肠杆菌的不同数量每个试管上方设置的大肠杆菌细胞。酚红被用作pH敏感染料。 E.没有一个测试大肠杆菌用作阴性对照。更多E.预期的大肠杆菌细胞以引起更多的脲酶分子的释放,伴随bŸ较强的颜色变化。 请点击此处查看该图的放大版本。
图3: 使用pH计监测pH上升引起的10 7 大肠杆菌的pH的变化。使用便携式pH计的大肠杆菌细胞进行监控。 E.没有一个测试大肠杆菌用作阴性对照。 10 E. 7的存在大肠杆菌细胞中的测试解决方案可以增加3〜pH单位的碱度在10分钟内。 请点击此处查看该图的放大版本。
名称 | 硒quence(5'-3') | 注意 |
BS1 | BTTTT TTTTT TTTAC TCTTC CTAGC FRQGG TTCGA TCAAG一个 | A:5'-生物素; R:腺嘌呤核苷酸; F:荧光胸苷;问:DABCYL胸苷 |
DE1 | GATGT GCGTT GTCGA GACCT GCGAC CGGAA CACTA CACTG TGTGG GGATG GATTT CTTTA CAGTT GTGTG TTGAA CGCTG TGTCA AAAAA AAAA | |
T1 | GACAA CGCAC ATCTC TTGAT CGAACÇ | |
LD1 | XTTTT TTTTT TTTTT TTGAC ACAGC GTTCA一个 | X:5'-NH 2的 |
表1: 合成的寡核苷酸的序列。
的细菌响应核酶到石蕊试验的RNA裂解活性的作用的翻译是通过使用脲酶和磁分离的成为可能,由图1所示。虽然改性石蕊试验的细菌检测示范是与E.完成大肠杆菌依赖性的RNA切割核酶,5,19,20设计通常可延伸为任何的RNA切割核酶。定为不同的分析物,并且各种方法的RNA切割DNA核酶的极大可用性来隔离从新的目标随机序列池新的RNA切割DNA核酶,我们预计,改性石蕊测试平台可以扩展到检测的感兴趣的多样目标。
为E.的试金石大肠杆菌的检测可以检测5000和500个细胞时,报告的反应时间被设定为1和2小时,分别。流行的聚合酶链反应(PCR)和夹心酶联免疫吸附测定(ELISA)方法可达到约10 4 -10 5 大肠杆菌的检测限大肠杆菌细胞在类似的测试时间。25,26因此,细菌试金石提供可比的检测灵敏度。
虽然细菌石蕊测试是容易进行,并且能够产生鲜明的色彩的变化,有几个因素可以显著影响测试结果。首先,脲酶的质量是非常重要的。我们已经从不同的源中使用的脲酶,并发现这些检测结果可以显著变化。我们建议使用尿素酶从材料部分指定的来源。
核酶的/脲酶/磁珠大会需要特别注意。磁珠彻底清洗以除去未杂交的UrDNA必须防止假阳性结果。护理也需要采取避免升的内表面上的残留磁性珠的堆积微量离心管中,这可能是难以看到的标识。一旦出现,使磁珠不再进行磁分离,因此,可能会携带一些未杂交UrDNA,可导致在记者反应假阳性信号。同样重要的是,以避免在磁分离步骤留下的磁性机架离心管长于10分钟。珠粒可聚集或粘到离心管,这可以减少洗涤效率并引入批与批不一致性。在洗涤溶液0.01%吐温-20的夹杂物可以改善批与批之间的一致性,并应来实现。
磁珠涂覆有链霉亲和,将其用作锚组装核酶脲酶偶联物上的磁性珠粒。两个链霉和脲酶是可以储存期间变性的蛋白质分子。我们通常在4℃下保存组装的DNA酶脲酶磁珠长达4周并定期作出新的批次,以获得更一致的结果。
护理也需要注意避免意外服用磁珠在以下核酶活化的磁性分离步骤(步骤6.9)。从我们的经验,细胞碎片和在溶液中的其它颗粒可降低磁分离效率,并且因此,一些磁性珠可以无意中移液中取出。这将导致假阳性结果。我们建议采取以下措施来缓解这个问题:一个较长的分离时间(如5-10分钟),压力对吸管较慢的释放,使上清温柔的撤离,以及对上清液进行另一轮磁选。
最后,为了避免其中多个样品进行测试的实验过程中,记者原液通过脲酶的意外污染是重要的。由于u的高反应性rease,这种性质的污染可导致假阳性结果。
The authors have nothing to disclose.
The funding for this research project was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) via a Discovery Grant to YL.
Name | Company | Catalog Number | Comments |
Ethylenediaminetetraacetic acid (EDTA) | VWR AMRESCO | 0105 | |
Sodium Hydroxide (NaOH) pellets | BIO BASIC CANADA INC. | SB6789 | |
Tris-base | VWR AMRESCO | 0497 | |
Boric acid | AMRESCO | 0588 | |
Urea | VWR AMRESCO | M123 | |
40% acrylamide/bisacrylamide (29:1) solution | BIO BASIC CANADA INC. | A0007 | |
Sucrose | Bioshop Canada inc. | SUC507 | |
Bromophenol blue | Bioshop Canada inc. | BRO777 | |
Xylenecyanol FF | SIGMA-ALDRICH | X-4126 | |
10% sodium dodecyl sulfate | Bioshop Canada inc. | SDS001 | |
Hydrochloric Acid (HCl) | CALEDON LABORATORIES LTD | 6026 | |
Sodium Chloride (NaCl) | Bioshop Canada inc. | SOD001 | |
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) | Bioshop Canada inc. | HEP001 | |
Magnesium Chloride (II) hexahydrate | VWR AMRESCO | 0288 | |
Tween 20 | Bioshop Canada inc. | TW508 | |
Adenosine Triphospahte (ATP) | AMRESCO | 0220 | |
Sodium Acetate trihydrate (NaOAc) | SIGMA-ALDRICH | S8625 | |
Ethanol | Commercial Alcohols | P016EAAN | |
Tetramethyleneethylenediamine (TEMED) | AMRESCO | 0761 | |
10% Ammonium persulfate (APS) | BIO BASIC CANADA INC. | AB0072 | |
Succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) | ThermoFisher SCIENTIFIC | 22360 | |
Dimethyl sulfoxide (DMSO) | CALEDON LABORATORIES | 803540 | |
Urease | SIGMA-ALDRICH | U0251 | |
1x Phosphate Buffered Saline (PBS) | ThermoFisher SCIENTIFIC | 70011-069 | |
0.04% Phenol red | SIGMA-ALDRICH | P3532 | |
10x T4 polynucleotide kinase reaction buffer | Lucigen | 30061-1 | |
10x T4 DNA ligase reaction buffer | Bio Basics Canada | B1122-B | |
T4 DNA ligase (5 U/μl) | Thermo Fischer Scientific | B1122 | |
Luria Bertani (LB) Broth | AMRESCO | J106 | |
Agar | AMRESCO | J637 | |
T4 polynucleotide kinase (10 U/μl) | Lucigen | 30061-1 | |
E. coli K12 (MG1655) | ATCC | ATCC700926 | |
Centrifuge | Beckman Coulter, Inc. | 392187 | |
Glass plates | CBS scientific | ngp-250nr | |
0.75 mm thick spacers | CBS scientific | VGS-0725r | |
12-well comb | CBS scientific | VGC-7512 | |
UV Lamp | UVP | 95-0017-09 | |
Spectrophotometer (NanoVue) | GE Healthcare | N/A | |
Metal plate | CBS scientific | CPA165-250 | |
Vortex | VWR International | 58816-123 | |
Gel electrophoresis apparatus | CBS scientific | ASG-250 | |
Petri dishes | VWR International | 25384-342 | |
100 kDa MWCO centrifugal filters | EMD Millipore | UFC510024 | |
Magnetic Bead (BioMag) | Bangs Laboratories Inc | BM568 | |
Magnetic Seperation Rack | New England BioLabs | S1506S | |
Microfuge tubes | Sarstedt | 72.69 | |
Syringe filter (0.22 μm) | VWR International | 28145-501 | |
14 ml culture tube | VWR International | 60818-725 | |
Cell culture incubator | Eppendorf Scientific | M13520000 | |
Branson Ultrasonic cleaner | Branson | N/A | |
Camera (Canon Powershot G11) | Canon | N/A | |
50 ml conical tube | VWR International | 89004-364 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。