Method Article
We present a method that describes isolation and culture of cochlear explants from embryonic mouse inner ear. We also demonstrate a method for gene transfer into cochlear explants via square-wave electroporation. The in vitro explant culture coupled with gene transfer technique enables researchers to study the effects of altering gene expression during development.
Auditory hair cells located within the mouse organ of Corti detect and transmit sound information to the central nervous system. The mechanosensory hair cells are aligned in one row of inner hair cells and three rows of outer hair cells that extend along the basal to apical axis of the cochlea. The explant culture technique described here provides an efficient method to isolate and maintain cochlear explants from the embryonic mouse inner ear. Also, the morphology and molecular characteristics of sensory hair cells and nonsensory supporting cells within the cochlear explant cultures resemble those observed in vivo and can be studied within its intrinsic cellular environment. The cochlear explants can serve as important experimental tools for the identification and characterization of molecular and genetic pathways that are involved in cellular specification and patterning. Although transgenic mouse models provide an effective approach for gene expression studies, a considerable number of mouse mutants die during embryonic development thereby hindering the analysis and interpretation of developmental phenotypes. The organ of Corti from mutant mice that die before birth can be cultured so that their in vitro development and responses to different factors can be analyzed. Additionally, we describe a technique for electroporating embryonic cochlear explants ex vivo which can be used to downregulate or overexpress specific gene(s) and analyze their potential endogenous function and test whether specific gene product is necessary or sufficient in a given context to influence mammalian cochlear development1-8.
The mammalian organ of Corti is comprised of a mosaic of specialized cell types, including two types of mechanosensory hair cells as well as at least four types of nonsensory supporting cells making it an ideal model system to study normal cellular processes like proliferation, fate specification, differentiation and patterning. In addition, the normal development of these different cell types is essential for normal hearing function. Hence, it is crucial to understand the factors, both molecular and cellular, that regulate their development. However, the small size of the mouse cochlea as well as its inaccessibility poses a particular challenge for gene expression studies. Moreover, most of the cell fate specification and patterning events occur during embryonic time periods and are mostly completed before birth. Therefore, identification and characterization of signaling events during embryonic time periods is essential to gain insight into the molecular basis of cochlear morphogenesis.
Here, we demonstrate a method to culture intact cochlea in vitro from embryonic mouse inner ears. The rationale behind the use of this technique is that cultured cochleae maintain their molecular and morphological characteristics thereby providing a valuable model for investigating potential candidate genes and exploring the mechanisms involved in cochlear morphogenesis. Although transgenic mice can be used for gene expression studies, an in vitro system is often needed for monitoring specific gene functions. Moreover, cochlear cultures can be established from transgenic mouse embryos so that their in vitro development and response to various soluble factors and antagonists can be studied. Although embryos at day 13 (E13) are used in this protocol, cultures from E12 or E14 to early postnatal inner ears can give similar results.
We also present a gene transfer technique in cultured embryonic cochlear explants using square wave electroporation. Following the isolation of the cochlear explants, electroporation can be used to express DNA plasmids of gene(s) of interest in individual cells within the cochlear duct. This technique serves as a complementary approach to studies utilizing transgenic mice to gain insight into the molecular pathways underlying cellular phenotype. Using this method of gene transfer, a variety of epithelial cell types within the embryonic cochlea are transfected, thereby enabling loss-and gain-of-function analyses at the single-cell level. In addition, electrophysiological studies can also be performed in cochlear explant cultures8. This method of in vitro electroporation is relatively simple and straightforward, combined with minimal damage to the tissue, has resulted in a rapid expansion of this technique.
注:生きた動物を使用するすべてのプロトコルを見直し、施設内動物管理使用委員会(IACUC)によって承認され、実験動物の管理と使用のために公式に承認された方法に従わなければなりませんしなければなりません。すべての解剖清浄な層流ベンチで滅菌技術を使用して行われるべきである。手袋とマスクは、必要に応じて、この手順の間に着用してください。
マウス胎児インナーイヤー1.解剖
オルガンコルチ植片の培養の2世代
注:開発のこの段階では、組織は軟骨であり、容易に鉗子を用いて解剖することができる。
3.エレクトロ媒介遺伝子導入
4.分析蝸牛外植片の文化
注:培養物は、通常の発達段階、P0と同等である6 DIVインキュベートする。 インビトロでのインキュベーション後、培養物を固定し、免疫細胞化学のために処理した。
We describe a method to isolate cochlea from embryonic inner ears and micro-dissect to expose the sensory epithelium. Once dissected, it may be plated and cultured as an intact cochlear duct (Figure 3) and analyzed by immunohistochemistry. The cultured cochlear explants provide a useful assay to examine the effect of variety of soluble factors and pharmacological drugs on cochlear development. Following dissection of cochlear explants, electroporation technique can be used to misexpress genes of interest and examine their effect on cochlear morphogenesis. The results presented here demonstrate that forced expression of basic helix-loop-helix (bHLH) transcription factor, Atoh1 into cultured cochlear explants established from E13 inner ears leads to ectopic hair cell formation. In contrast, forced expression of another bHLH transcription factor, NeuroD1 in prosensory cells and nonsensory epithelial cells within GER leads to the formation of ectopic neurons.
Figure 1: Dissection of the embryonic cochlea. Dissection steps involved in isolating developing cochleae from E13 mouse head as discussed in Part 1. Dotted line in (A) indicates dorsal midline and the borders of inner ears are indicated by arrows in (D). In (E), C indicates cochlea and V, vestibule. Scale bar: 1.0 mm.
Figure 2: Generation of embryonic cochlear explant cultures. Panels (A-F) illustrate key steps in the dissection of the cochlea down to the sensory epithelium as described in Part 2. C, cochlea; V, vestibule. Scale bar: A-E, 100 m; F, 10 mm.
Figure 3: The development of the organ of Corti in cochlear cultures. The formation of hair cells and supporting cells occurs normally in cultured explants. Cross-sectional view of E13 cochlear explant incubated for 6 DIV (equivalent to P0) (B) and top-down view of a whole-mount cochlear explant immuno-stained with Myo7a in green and Sox2 in red demonstrates the presence of one inner and 3-4 rows of outer hair cells and surrounding support cells. Arrows point to Deiters’ cells and black arrowheads indicate the presence of stereociliary bundles within the cochlear explant. Arrowhead in red indicates the depression formed by the prominent pillar cell projection. IHC, inner hair cell; O1,2,3, three outer hair cells, DCs, Deiters’ cells; IPhC, inner phalangeal cell; GER, greater epithelial ridge which includes nonsensory epithelial cells present on the modiolar side of the epithelium; LER, lesser epithelial ridge, includes nonsensory epithelial cells present on strial edge of the sensory epithelium. Scale bar: B, 100 µm.
Figure 4: Electroporation of Atoh1.EGFP (A-C) and NeuroD1 into the organ of Corti explant culture. Embryonic (E) day 13 cochlear explants were established from WT CD1 mouse pups and electroporated with Atoh1.EGFP (A-C), NeuroD1-EGFP (D-F) reporter constructs as described and immunolabeled with hair cell-specific marker anti-Myo7a or neuronal marker, TuJ1 (β-tubulin III) in red. Electroporated cells which can be visualized by EGFP expression are seen throughout the GER, LER and sensory epithelium (SE) cells. The NeuroD1 transfected cochlear epithelial cells after 5 DIV acquire neuronal phenotype with dendritic processes, most of which are positive for TuJ1 while Atoh1 transfected cells are positive for Myo7a expression. SE, sensory epithelium; GER, greater epithelial ridge. Scale bar: A-C, 20 µm; D-F, 50 µm. Please click here to view a larger version of this figure.
、感覚非感覚と螺旋神経節ニューロンを含むマウス内耳の膜迷路内のすべての細胞はすべてE8 10-14の周りに、外胚葉の後脳に隣接して位置placodally由来の耳胞に由来している。 E11で、耳胞の腹側領域は蝸牛管を形成するように延びており、開発が進むにつれて、となる蝸牛内の上皮細胞、ならびに内耳胞の他の領域群は、その後に生じさせるprosensoryパッチとして指定機械感覚有毛細胞および非感覚支持細胞の異なるタイプ。現像蝸牛内、内有毛細胞および外有毛細胞の3つの行の一つの行にE15.5の周り及びE17により同定することができる、パターニング内有毛細胞、柱細胞および外有毛細胞の3つの行の単一の列を有する本質的に完了する。蝸牛管は、最初E17を通してDIFのすべてを成長を開始E11からまたがる時間の期間ではferent細胞運命決定とパターニングは有毛細胞と支持細胞の正常な補数との印象的な携帯パターンを生成するために開発上皮内で発生する。有毛細胞および/または支持細胞の損失は、聴覚障害の主要な原因である。これらの細胞型は、胚発生の間に、かなりコンパクトな期間中にのみ生成されるので、再生戦略に重要な洞察をもたらすはずであるこれらの細胞型のそれぞれを特定の分子的および遺伝的経路を理解することが重要である。
蝸牛培養およびエレクトロポレーション技術は、発生中のマウスにおける遺伝子発現を操作するために開発されてきた。この動画では、一次外植片およびコルチ培養胚マウス器官への遺伝子送達のためのエレクトロポレーション法を生成するための技法を培養することを実証した。このようにして調製した一次外植片は、 インビトロで 7〜10日間維持することができる。蝸牛外植CAnは運命仕様、コミットメント、分化、およびパターニングなどの発生過程を調節するメカニズムを理解することを可能にする薬理学的アプローチによって遺伝子発現を操作するために使用される。さらに、この方法は、E12を過ぎて生存しない突然変異体マウス胎児の発達の表現型の解析を容易にします。
方形波エレクトロポレーション媒介遺伝子導入手順は、感覚有毛細胞、支持細胞、およびエクスビボ運命を視覚化するために、GERとLER領域内の細胞における遺伝子発現を操作するための機構を提供する。この手順を使用して、我々はダウンレギュレートまたは異所的にそうでなければ、野生型バックグラウンドでprosensory細胞、有毛細胞および/または支持細胞の特定の遺伝子を発現し、運命の指定及び分化に及ぼす特異的な効果を分析することができる。これは発展途上蝸牛内の特定の遺伝子の機能を理解することが可能となります。例えば、のように図4、GERまたはLER内の細胞内のAtoh1 2,4またはNeuroD1の8の強制発現は、それぞれ異所性有毛細胞と神経細胞の形成につながる。また、この技術は、複数の候補遺伝子6,7エレクトロポ感覚有毛細胞と支持細胞の形成、分化および組織に対するその効果を調べることができます。アデノウイルスベクターを含む遺伝子導入技術は、広範な発現を提供し、正常内耳15,16で使用されてきた。しかしながら、この技術は、多くの場合、時間がかかるウイルスを生成し、精製するための技術に依存する。
cochear文化は早くもE12として確立することができますが、E12.5 / E13よりも若い蝸牛外植片のエレクトロポレーションは、分析のために、それが面倒なこと組織に損傷が発生します。さらに、発現ベクターのプロモーターは、細胞型はドゥ蝸牛内にトランスフェクトされたかを判断し使用CT。感覚上皮内の細胞におけるトランスフェクションの効率化におけるCMV初期エンハンサー/ニワトリβアクチンプロモーターの使用により、たとえば、発現ベクターを含有するヒトサイトメガロウイルスプロモーターは、Kollikers '器官における強固なトランスフェクションをもたらす。胚性蝸牛外植片のエレクトロポレーション中に発生した一般的な問題は、過剰な細胞死および/または組織と貧弱なトランスフェクション効率の損傷である。電極およびDNA濃度の適切な間隔は、最小限の損傷および高いトランスフェクション効率を得る際に重要な役割を果たしている。要約すると、これらの技術は、機能の獲得または喪失戦略的および薬理学的操作を介して遺伝子発現を操作し、大幅にパターニングおよび細胞の運命決定に影響を与える信号の分析において補助するために我々の能力を強化する。
No conflicts of interest declared.
We would like to acknowledge Dr. Bradley Schulte for comments on this protocol. This work was supported by National Institutes of Health grant R00 (5R00DC010220). This project was performed in a renovated laboratory space supported by Grant C06RR014516.
Name | Company | Catalog Number | Comments |
HBSS | Gibco | 14065-056 | |
HEPES | Gibco | 15630-080 | |
Dulbecco’s Modified Medium | Gibco | 12430-054 | |
Fetal bovine serum | Gibco | 10082 | |
N-2 Supplement (100x) | Gibco | 17502-048 | |
Ciprofloxacin hydrochloride | Cellgro | 61-277-RF | |
Glass Dish 60 mm | Kimble Chase | 23062-6015/23064-6015 | |
Glass Dish 100 mm | Kimble Chase | 23064-10015/23062-10015 | |
Minutien pins | Fine Science Tools | 26002-15 | |
Dumont #5 forceps | Fine Science Tools | 11251-10 | |
Pulse generator | Protech International Inc | CUY21Vivo-SQ | |
Glass bottom culture dishes | MatTek | P35G-0-10-C | |
Matrigel matrix | BD Biosciences | 356237 | |
Culture dish, 60 x 15 mm | Becton Dickinson | 353037 | |
Tissue culture dishes | Greiner Bio-one | 639160 | |
Phosphate buffered saline | Gibco | 10010-023 | |
OS-30 | Dow Corning | 4021768 | |
Fluoromount | Southern Biotech | 0100-01 | |
Conical tubes, 15 ml | Greiner Bio-one | 188261 | |
Myosin 6 | Proteus Biosciences Inc | 25-6791 | |
Myosin 7a | Proteus Biosciences Inc | 25-6790 | |
TuJ1 | Sigma | T2200 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved