Method Article
In this study the expression of a target human recombinant protein in different production platforms was compared. We focused on traditional fermenter-based cultures and on plants, describing the set-up of each system and highlighting, on the basis of the reported results, the inherent limits and advantages for each platform.
Plant-based systems are considered a valuable platform for the production of recombinant proteins as a result of their well-documented potential for the flexible, low-cost production of high-quality, bioactive products.
In this study, we compared the expression of a target human recombinant protein in traditional fermenter-based cell cultures (bacterial and insect) with plant-based expression systems, both transient and stable.
For each platform, we described the set-up, optimization and length of the production process, the final product quality and the yields and we evaluated provisional production costs, specific for the selected target recombinant protein.
Overall, our results indicate that bacteria are unsuitable for the production of the target protein due to its accumulation within insoluble inclusion bodies. On the other hand, plant-based systems are versatile platforms that allow the production of the selected protein at lower-costs than Baculovirus/insect cell system. In particular, stable transgenic lines displayed the highest-yield of the final product and transient expressing plants the fastest process development. However, not all recombinant proteins may benefit from plant-based systems but the best production platform should be determined empirically with a case-by-case approach, as described here.
Recombinant proteins are commercially mass-produced in heterologous expression systems with the aid of emerging biotechnology tools. Key factors that have to be considered when choosing the heterologous expression system include: protein quality, functionality, process speed, yield and cost.
In the recombinant protein field, the market for pharmaceuticals is expanding rapidly and, consequently, most biopharmaceuticals produced today are recombinant. Proteins can be expressed in cell cultures of bacteria, yeasts, molds, mammals, plants and insects, as well as in plant systems (either via stable- or transient-transformation) and transgenic animals; each expression system has its inherent advantages and limitations and for each target recombinant protein the optimal production system has to be carefully evaluated.
Plant-based platforms are arising as an important alternative to traditional fermenter-based systems for safe and cost-effective recombinant protein production. Although downstream processing costs are comparable to those of microbial and mammalian cells, the lower up-front investment required for commercial production in plants and the potential economy of scale, provided by cultivation over large areas, are key advantages.
We evaluated plants as bioreactors for the expression of the 65 kDa isoform of human glutamic acid decarboxylase (hGAD65), one of the major autoantigen in Type 1 autoimmune diabetes (T1D). hGAD65 is largely adopted as a marker, both for classifying and monitoring the progression of the disease and its role in T1D prevention is currently under investigation in clinical trials. If these trials are successful, the global demand for recombinant hGAD65 will increase dramatically.
Here, we focus on the expression of the enzymatically inactive counterpart of hGAD65, hGAD65mut, a mutant generated by substituting the lysine residue that binds the cofactor PLP (pyridoxal-5'-phosphate) with an arginine residue (K396R)1.
hGAD65mut retains its immunogenicity and, in plant and insect cells, accumulates up to ten-fold higher than hGAD65, its wild-type counterpart. It was hypothesized that the enzymatic activity of hGAD65 interferes with plant cell metabolism to such an extent that it suppresses its own synthesis, whereas hGAD65mut, the enzymatically-inactive form, can be accumulated in plant cells to higher levels.
For the expression of hGAD65mut, the use of different technologies, widely used in plant biotechnology, was explored here and compared to traditional expression platforms (Escherichia coli and Baculovirus/insect cell-based).
In this work, the recombinant platforms developed for the expression of hGAD65mut comprising traditional and plant-based systems were reviewed and compared on the basis of process speed and yield, and of final product quality and functionality.
1. Construction of Expression Vectors
2. Recombinant Protein Expression
3. Recombinant Protein Expression Analyses
An experimental design for the heterologous expression of a target recombinant protein in different production systems is described here. The first focus was the set-up of the different platforms by establishing the optimal conditions for the expression of the target protein in each system.
The expression of the target protein, hGAD65mut, was induced in triplicate E. coli cultures. Following 3 hr of expression at 37 °C, bacterial cells were collected by centrifugation and lysed by sonication. After a centrifugation step, soluble proteins were separated from insoluble inclusion bodies and initial analyses demonstrated that hGAD65mut accumulated prevalently in insoluble inclusion bodies (data not shown). Recombinant protein solubilisation required the use of urea 6 M, which, for its strong denaturing properties, interferes with RIA analysis, making impossible a proper quantification of hGAD65mut. Several strategies have been reported for limiting the formation of inclusion bodies, comprising growing the microbial cells at low temperature11. The cultures were grown at 15 °C and 20 °C, and recombinant protein expression was induced at the same temperatures. As shown in Figure 1A, the solubilisation of hGAD65mut produced at both temperatures, again requires urea (lanes S2). Thus, low temperatures in this experiment do not prevent hGAD65mut from forming insoluble aggregates.
Baculovirus vectors containing the hGAD65mut sequence (Baculo.G65mut) was expressed in adherent Sf9 cell cultures. V1 and V2 high-titer stocks were prepared and the best-performing infection conditions were set up evaluating different viral stock volumes from 5-50 μl. As shown in Figure 1B, the optimal viral stock volume was identified as 25 μl, yielding 11.8 ± 0.8 μg of recombinant protein per ml of culture medium, as evaluated by RIA analysis (Table 1).
Following infiltration, time course analysis of agroinfected N. benthamiana leaves was carried out in the two transient expression systems. For the pK7WG2-based system, leaf samples were pooled daily in the range 1-5 dpi, total soluble proteins (TSP) were extracted and equal amounts of TSP were analyzed by western blot (Figure 1C). This analysis highlighted that the maximum accumulation of target recombinant protein is reached 2 dpi. Therefore, the leaves were harvested 2 dpi and the protein extracts were analyzed by RIA for measuring recombinant protein accumulation, which shows an average of 67.8 µg/g FLW (fresh leaf weight, Table 1). Recombinant protein expression levels, using this system, may be further improved, by co-infiltrating the leaves with a suppressor of Post-Transcriptional Gene Silencing (PTGS) like P19 or HC Pro12.
The same time-course detection was carried out with N. benthamiana leaves agroinfected with the MagnICON vectors: infected leaves were collected 1-8 dpi and equal amounts of TSP were analyzed by western blot. This analysis demonstrated that maximum recombinant protein accumulation is obtained 4 dpi (Figure 1D), with an average accumulation of the recombinant protein of 78.8 µg/g FLW (Table 1), as evaluated by RIA.
The expression of hGAD65mut in transgenic tobacco plants has been previously reported12, showing that recombinant protein levels varied significantly among independently transformed lines. The best-performing hGAD65mut T1 transgenic plant was self-crossed and the derived plants (T2) were analyzed to select again the best performing one. This procedure was repeated over several generations to develop a homogeneous production platform, checking the performance in each generation by RIA until no further improvement was achieved (data not shown). In Figure 1E, a representative western blot of T5 transgenic plants is reported, where the homogeneity of recombinant protein yields is evident. As shown in Figure 1F, the average hGAD65mut yield increased from T2 to T6, reaching level of 99.1 µg/g FLW (Table 1) and, during the selection process, the standard deviation of the expression level declined.
Figure 1: Platform set-up. Set up of best conditions for hGAD65mut expression in each platform. (A) E. coli inducible expression platform. Bacterial cells were grown at 15 °C or 20 °C. Upper panel, western blot of hGAD65mut in cell extracts (2 µg TSP per lane). Lower panel, loading control stained with Coomassie. n.c. = negative control, bacterial cells transformed with the pDEST17 vector containing the chloramphenicol-resistance gene; T: Total samples; S1: Supernatant after sonication and centrifugation; S2 and P: Supernatant (1) and Pellet (2) after centrifugation of the sample solubilized in urea-containing buffer. (B) Baculovirus/insect cell platform. The following viral stock volumes were tested: 5, 25 and 50 µl. Upper panel, western blot of hGAD65mut in cell extracts (5 µg TSP per lane). Lower panel, loading control stained with Coomassie. n.c. = negative control, extract of non-transformed insect cells. (C) Transient expression in N. benthamiana plants using the pK7WG2 vector. Samples were collected daily, 1-5 dpi (lanes 1-5). Upper panel, western blot of hGAD65mut in leaf extracts (2.5 µg TSP per lane). Lower panel, loading control stained with Coomassie, where the large subunit of Rubisco is evident. n.c. = negative control, plants infiltrated with the pK7WG2 vector carrying the gfp marker gene. (D) Transient expression in N. benthamiana plants using MagnICON vectors. Samples were collected daily, 1-8 dpi (lanes 1-8). Upper panel, western blot of hGAD65mut in leaf extracts (5 µg TSP per lane). Lower panel, loading control stained with Coomassie where the large subunit of Rubisco is evident. n.c. = negative control, plants infiltrated only with the pICH20111 5’-module and pICH14011 integrase-module. Numbers indicate molecular mass marker in kDa. p.c. = positive control, 15 ng of commercial hGAD65 produced in the Baculovirus/insect cell system. (E) Stable expression in N. tabacum plants. Leaf samples were collected from different T5 plants (lanes 1-11). Upper panel, western blot of hGAD65mut in leaf extracts (5 µg TSP per lane). Lower panel, loading control stained with Coomassie. n.c. = negative control, wild-type plants. Numbers indicate molecular mass marker in kDa. p.c.= positive control, 15 ng of commercial hGAD65 produced in the Baculovirus/insect cell system. (F) Stable expression in N. tabacum plants. Boxplot representation of hGAD65mut accumulation over several generations derived from best-performing hGAD65mut T1 transgenic tobacco plant reported as µg/g FLW calculated from RIA data. Please click here to view a larger version of this figure.
System | [hGAD65mut] (µg/ml) | [hGAD65mut] |
Baculo/insect | 117.5 ± 7.7 | 11.8 ± 0.8 µg/ml culture medium |
Transient | 22.6 ± 0.9 | 67.8 ± 2.7 µg/g FLW |
MagnICON | 26.3 ± 5.9 | 78.8 ± 17.8 µg/g FLW |
Elite T6 | 33.0 ± 3.8 | 99.1 ± 11.3 µg/g FLW |
Table 1: hGAD65mut yields hGAD65mut yields in different platforms - fermenter-based (Baculo/Insect) and plant-based (pK7WG2- and MagnICON in N. benthamiana and elite T6 in N. tabacum). Second column - hGAD65mut concentration in protein extracts (µg/ml). Third column - hGAD65mut content in fresh leaf weight (µg/g FLW) for plant-based platforms and in cell culture medium (µg/ml) for fermenter-based platform.
In this study three different platforms were compared for the expression of a recombinant human protein: bacterial cells, Baculovirus/insect cells and plants. The plant-based platform was further explored by exploiting three widely used expression technologies (i.e., transient - MagnICON and pK7WG2 based - and stable). The target protein chosen for this experiment, hGAD65mut, has been previously expressed in different systems13, and its production and functionality are easily detectable and measurable14.
Bacterial cells were not an effective production platform because hGAD65mut formed inclusion bodies, even at low-temperature growing conditions, thus requiring laborious solubilization and refolding to achieve its native conformation. Indeed, the main failure of this platform for the expression of complex recombinant proteins is the right conformation of the final product.
The Baculovirus/insect cell platform mediated a high expression of the immunoreactive recombinant protein, but the main limitation of this expression system is the high cost of the culture media, required to grow insect cells. It was estimated that total production costs for 1 g of hGAD65mut could reach 700 euro in this production platform (considering 9 L of insect cell culture media required). A further limitation of this expression platform is the need of sterile cultivation of insect cells, which requires personnel with aseptic manipulation skills. To ensure efficient recombinant protein accumulation two critical parameters must be carefully controlled in this expression system: the viral stock volumes used to infect cells and the timing of viral infection. Furthermore, the detergent, used for total soluble protein extraction from Sf9 insect cells, drastically influences recombinant protein solubilisation.
Plant-based systems were the most beneficial platform to express hGAD65mut: the plant-made recombinant protein was immunoreactive and accumulated at high levels in leaf tissues. Comparing different plant-based expression systems, the highest yields were achieved in stable transformed tobacco plants (Table 1) and, if considering the total biomass of tobacco compared to N. benthamiana, used for transient expression, the overall higher productivity of tobacco is evident. However, the main limitation of stable transformed tobacco plant-based platform is the time required for the set-up of the system, which in our study took 20 months. Indeed, a homozygous line should be selected for recombinant protein expression homogeneity and it may require repeated self-cross cycles, starting from the highest T1 expressing lines. In particular, when the selected T1 bears more than one copy of the transgenic trait, the breeding program may take up to 3 years.
Transient expression systems offered the advantage of rapid upscaling due to a short interval between transformation and expression and the set-up of the expression platform required 4 days. However, a limitation of the plant-based transient systems is that their automation is hardly implementable on a lab-scale unless dedicated high-grade equipment for agro-infiltration is used. Hence, a proper calculation for the large-scale production of hGAD65 using transient-based systems cannot be performed here. On the other hand, we speculate that total production costs for 1 g of recombinant protein using T6 stable tobacco line may be calculated at less than 5 euro (considering soil for growing 60 tobacco plants). To ensure the efficient agroinfiltration and protein production several critical parameters should be carefully controlled (plant developmental stage, grow and infiltration condition of Agrobacterium), as previously reported15. Furthermore, for each expression experiment a specific time-course analysis should be performed to select the dpi that allows the highest accumulation of the recombinant protein.
The example discussed here can be considered a proof-of-principle case study, that highlights some of the specific advantages of plant-based production over traditional systems. In particular, tobacco transgenic lines homogeneously expressing the recombinant protein can be considered a valuable platform for the mass production of recombinant proteins that are required in large-quantities.
The authors declare that there is no conflict of interests regarding the publication of this paper.
This work was supported by the COST action ‘Molecular pharming: Plants as a production platform for high-value proteins’ FA0804. The Authors thank Dr Anatoli Giritch and Prof. Yuri Gleba for providing the MagnICON vectors for research purposes.
Name | Company | Catalog Number | Comments |
Yeast extract | Sigma | Y1333 | |
Tryptone | Formedium | TRP03 | |
Agar Bacteriological Grade | Applichem | A0949 | |
Sf-900 II SFM medium | Gibco | 10902-088 | |
Grace’s Insect Medium, unsupplemented | Gibco | 11595-030 | |
Cellfectin II Reagent | Invitrogen | 10362-100 | |
MS medium including vitamins | Duchefa Biochemie | M0222 | |
Sucrose | Duchefa Biochemie | S0809 | |
Plant agar | Duchefa Biochemie | P1001 | |
Ampicillin sodium | Duchefa Biochemie | A0104 | Toxic |
Gentamycin sulphate | Duchefa Biochemie | G0124 | Toxic |
Ganciclovir | Invitrogen | I2562-023 | |
Carbenicillin disodium | Duchefa Biochemie | C0109 | Toxic |
Kanamycin sulfate | Sigma | K4000 | Toxic |
Rifampicin | Duchefa Biochemie | R0146 | Toxic – 25 mg/ml stock in DMSO |
Streptomycin sulfate | Duchefa Biochemie | S0148 | Toxic |
Spectinomycin dihydrochloride | Duchefa Biochemie | S0188 | |
IPTG (isopropil-β-D-1-tiogalattopiranoside) | Sigma | I5502 | Toxic |
MES hydrate | Sigma | M8250 | |
MgCl2 | Biochemical | 436994U | |
Acetosyringone | Sigma | D134406 | Toxic – 0.1 M stock in DMSO |
Syringe (1 ml) | Terumo | ||
MgSO4 | Fluka | 63136 | |
BAP (6-Benzylaminopurine) | Sigma | B3408 | Toxic |
NAA (Naphtalene acetic acid) | Duchefa Biochemie | N0903 | Irritant |
Cefotaxime | Mylan Generics | ||
Trizma base | Sigma | T1503 | Adjust pH with 1 N HCl to make Tris-HCl buffer |
HCl | Sigma | H1758 | Corrosive |
NaCl | Sigma | S3014 | 1 M stock |
KCl | Sigma | P9541 | |
Na2HPO4 | Sigma | S7907 | |
KH2PO4 | Sigma | P9791 | |
PMSF (Phenylmethanesulfonylfluoride) | Sigma | P7626 | Corrosive, toxic |
Urea | Sigma | U5378 | |
β-mercaptoethanol | Sigma | M3148 | Toxic |
Tween-20 | Sigma | P5927 | |
Hepes | Sigma | H3375 | |
DTT (Dithiothreitol) | Sigma | D0632 | Toxic – 1 M stock, store at -20 °C |
CHAPS | Duchefa Biochemie | C1374 | Toxic |
Plant protease inhibitor cocktail | Sigma | P9599 | Do not freeze/thaw too many times |
SDS (Sodium dodecyl sulphate) | Sigma | L3771 | Flammable, toxic, corrosive – 10% stock |
Glycerol | Sigma | G5516 | |
Brilliant Blue R-250 | Sigma | B7920 | |
Isopropanol | Sigma | 24137 | Flammable |
Acetic acid | Sigma | 27221 | Corrosive |
Anti-Glutamic acid decarboxylase 65/67 | Sigma | G5163 | Do not freeze/thaw too many times |
Horseradish peroxidase (HRP)-conjugate anti-rabbit antibody | Sigma | A6154 | Do not freeze/thaw too many times |
Sf9 Cells | Life Technologies | 11496 | |
BL21 Competent E. coli | New England Biolabs | C2530H | |
Protein A Sepharose | Sigma | P2545 | |
Cell culture plates | Sigma | CLS3516 | |
Radio Immuno Assay kit | Techno Genetics | 12650805 | Radioactive material |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone