Method Article
A method is presented for the reconstitution of model nucleosomal arrays from recombinant core histones and tandemly repeated nucleosome positioning DNA. We also describe how sedimentation velocity experiments in the analytical ultracentrifuge, and atomic force microscopy (AFM) are used to monitor the extent of nucleosomal array saturation after reconstitution.
Core histone octamers that are repetitively spaced along a DNA molecule are called nucleosomal arrays. Nucleosomal arrays are obtained in one of two ways: purification from in vivo sources, or reconstitution in vitro from recombinant core histones and tandemly repeated nucleosome positioning DNA. The latter method has the benefit of allowing for the assembly of a more compositionally uniform and precisely positioned nucleosomal array. Sedimentation velocity experiments in the analytical ultracentrifuge yield information about the size and shape of macromolecules by analyzing the rate at which they migrate through solution under centrifugal force. This technique, along with atomic force microscopy, can be used for quality control, ensuring that the majority of DNA templates are saturated with nucleosomes after reconstitution. Here we describe the protocols necessary to reconstitute milligram quantities of length and compositionally defined nucleosomal arrays suitable for biochemical and biophysical studies of chromatin structure and function.
Eukaryotic genomes do not exist as naked DNA, but rather are compacted and organized by bound proteins. These complexes of DNA and protein are known as chromatin. The basic repeating unit of chromatin is the nucleosome. A nucleosome consists of histone octamer and 146 base pairs of DNA wrapped around the histone octamer about 1.6 times1. The histone octamer is composed of two copies each of the core histones H2A, H2B, H3, and H4. Core histone octamers that are repetitively spaced along a DNA molecule are called nucleosomal arrays. The extended structure of nucleosomal arrays has been referred to as the 10 nm fiber or the "beads on a string" structure and is present in vitro under low salt conditions2. The 10 nm fiber is capable of condensing into higher order structures through intra-array compaction and/or inter-array oligomerization2. These higher order structures can be induced in the presence of salts, or can be influenced through the binding of chromatin architectural proteins to the nucleosomal array3,4. Levels of chromatin compaction are inversely correlated with rate of transcription in vivo5,6. Recent research highlights the importance of the structural organization of genomes in processes such as differentiation, cancer development, and others7,8. The use of nucleosomal arrays to study chromatin structure and function has become widespread. Here we describe a method for the assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA.
Using recombinant DNA with tandem repeats of nucleosome positioning sequences allows for the reconstitution of arrays that contain regularly spaced nucleosomes. Two of the more popular positioning sequences are the 5S rRNA gene sequence and the "601" sequence9,10. The 601 sequence was derived from SELEX experiments and more strongly positions nucleosomes than the 5S sequence11. Consequently, the linker DNA length of the 601 arrays is more homogeneous. Tandemly repeated nucleosome positioning DNA is obtained by gel filtration4,12. Recombinant histones are purified from E. coli under denaturing conditions13. The use of recombinant histones allows one to carefully control the histone composition of the nucleosomal arrays. For example, core histones bearing specific mutations14 or post-translational modifications15,16 can be substituted for wild type core histones.
Sedimentation velocity experiments monitor the rate of sedimentation of macromolecules in solution under an applied centrifugal force17. This yields information about the size and shape of macromolecules in a sample. Sedimentation velocity experiments are thus an appropriate tool for studying solution state changes in chromatin fiber structure due to chromatin condensation18. Importantly, it is first necessary to use sedimentation velocity experiments as a quality control step in nucleosomal array reconstitution. If DNA and nucleosomes are not combined at the proper molar ratio, the arrays may be under- or over-saturated with core histones. Thus, the information gained from sedimentation velocity experiments is used to ensure that the DNA is properly saturated with nucleosomes. It is important to use alternative methods to estimate the saturation of DNA with nucleosomes, especially if working with a previously uncharacterized DNA template. Therefore, we also describe a method for analysis of nucleosomal arrays using atomic force microscopy (AFM). AFM is a powerful technique that allows visualization of the effects of a number of parameters, such as the level of saturation, effect of the presence of histone variants or the effects of MgCl2 19,20. AFM has also been applied to study nucleosome dynamics using time lapse imaging 21. In vitro assembled nucleosomal 12-mer arrays are particularly amenable to AFM studies because they belong in the right size range for AFM imaging 22. In the present study we have used AFM of nucleosomal arrays as a quality control as well as a means of affirming the data from AUC ("seeing is believing"). In addition to simple visualization, AFM allows measurement of height profiles of samples as an additional metric.
1. Assembly of Recombinant Core Histones into Octamers
Rationale: The first step in nucleosomal array reconstitution is to prepare native core histone octamers from lyophilized recombinant core histones. Histone proteins are combined in equal molar amounts and assembled into histone octamers by dialyzing the samples out of a denaturing buffer into refolding buffer.
Note: See step 2.1-2.2 to prepare column equilibration for the next day.
2. Purification of Histone Octamers by Size Exclusion Chromatography
Rationale: After concluding with section 1, samples will contain histone octamers as well as other histone complexes such as aggregates, H3/H4 tetramers, and H2A/H2B dimers. Histone octamers will be purified away from these other complexes using size exclusion chromatography (SEC).
3. Reconstitution of Nucleosomal Arrays from DNA and Purified Octamers
Rationale: Reconstitution of nucleosomal arrays requires that histone octamers and template DNA be combined at specific molar ratios. Mixtures of DNA and histone octamers in 2 M NaCl are step dialyzed into buffers of decreasing ionic strength. A gradual change to lower salt ensures proper nucleosome formation. Obtaining nucleosomal arrays with the desired level of histone octamer saturation of the template DNA requires small scale test reconstitutions followed by a large scale preparative reconstitution. The appropriate conditions defined by the small scale reconstitutions are used to guide the preparative reconstitution.
Notes: For plasmid DNA purification at decreased cost but increased effort, one can use alkaline lysis with phenol/chloroform DNA purification in order to isolate plasmid DNA from E. coli23,24. Strategies for separating template DNA from plasmid DNA may vary with changes in template DNA size. For SEC it is important to set up the restriction enzyme digest in a fashion which maximizes the difference in size between the template and plasmid DNA.
Components in all buffers: 10 mM Tris pH 7.8, 1 mM EDTA. Buffer 1 (add 1 M NaCl, 1 mM DTT) for 5-6 hr. Buffer 2 (add 0.75 M NaCl, 1 mM DTT) overnight. Buffer 3 (add 2.5 mM NaCl, 1 mM DTT) for 5-6 hr. Buffer 4 (add 2.5 mM NaCl, 0.1 mM PMSF) overnight.
Note: In order to conserve resources, small scale samples should have the minimum volume necessary to suffice for downstream screening assays. In order to have enough sample for the sedimentation velocity and AFM experiments listed here, 50 μl samples at 0.3 mg/ml DNA are appropriate. The size of large scale, preparative samples are dependent on their intended use. A large scale sample should be prepared in the same manner as the small scale samples.
4. Sedimentation Velocity Analysis of Reconstituted Nucleosomal Arrays
Rationale: Sedimentation velocity experiments in the Beckman Xl-A/I analytical ultracentrifuge yield information on the size and shape of molecules in solution. Sedimentation velocity experiments performed under low salt conditions are used to determine the extent to which the reconstituted arrays are saturated with nucleosomes.
Note: Single scans allow the measurement area to be shortened by starting measurements just before the sample meniscus (Figure 2A). Most of the scans generated during the AUC run should have boundary fractions past the meniscus as well as stable plateaus (Figure 2B). Dirty lenses on the AUC cells can generate scans with large spikes, these may affect analysis of the data. The UltraScan software includes a manual which is a great resource for information regarding the analysis of analytical ultracentrifugation data26.
5. Editing and Analyzing Sedimentation Velocity Data
Rationale: Raw sedimentation velocity data should be analyzed by a program that yields a diffusion-corrected sedimentation coefficient distribution. This information in turn indicates the fraction of a reconstituted sample that contains a given saturation level, e.g. if using a 12-mer DNA template it will be possible to determine the fraction of reconstituted arrays that has 10, 11 and 12 nucleosomes/DNA.
6. Visualizing Nucleosomal Arrays Using Atomic Force Microscopy (AFM)
Rationale: AFM allows visualization of the level of saturation of nucleosomal arrays. This technique complements sedimentation velocity by AUC and restriction enzyme digestion as a quality control assay.
To illustrate the protocol we reconstituted nucleosomal arrays from recombinant Xenopus core histones and DNA consisting of 12 tandem 207 bp repeats of the 601 positioning sequence (601207 x 12). We first assembled native octamers from lyophilized core histones and then purified the octamers by FPLC using an S200 column (Figure 1A). Larger complexes elute earlier from the S200 column. Histones generally elute in this order: non-specific histone aggregates, histone octamer, H3/H4 tetramer, and H2A/H2B dimer (Figure 1A). The peaks from the S200 column were analyzed by SDS-PAGE. The gels of purified octamer fractions should indicate equimolar amounts of the four histone proteins (Figure 1B). Note that Xenopus H2A and H2B have molecular weights that differ by only about 200 Da and hence they appear as a single band on SDS gels. H3/H4 tetramers and H2A/H2B dimers will elute after, but very close to the histone octamer peak. When selecting which fractions to keep it is prudent to discard fractions appearing toward the end of the octamer peak in the chromatogram. These fractions may have an increased amount of non-octameric histone complexes. In this case fractions 64-67 were pooled and saved for nucleosomal array reconstitution (Figure 1).
Within UltraScan there are two different ways of viewing the diffusion-corrected distribution of sedimentation coefficients that is obtained from the enhanced van Holde-Weischet analysis. The red line represents the integral distribution of sedimentation coefficients. For any given point on the graph, the y-axis indicates the fraction of the sample that has a sedimentation coefficient equal to or less than the value indicated on the x-axis. Thus, a vertical line is indicative of a homogenous sample, while a heterogeneous sample will have a curve with positive slope. The green line is the derivative of the integral distribution. The area under a peak is proportional to the fraction of the sample that has that sedimentation coefficient. Fully saturated 601207 x 12 nucleosomal arrays have a sedimentation coefficient of 29S 29. For the sample shown in Figure 3, the data indicate that approximately 70% of the arrays are saturated and 30% are over saturated.
Atomic force microscopy has gone from an emerging technique to a popular complementary approach to study chromatin organization in vitro. Here we have used AFM alongside of analytical ultracentrifugation to establish the extent of template saturation after reconstitution. In Figure 6 the majority of the ~27S arrays (Figure 4A) used for imaging contained 10-11 nucleosomes (Figure 4B), demonstrating excellent agreement between the AFM and AUC results. The AFM results obtained here thus validate this approach and make it a reliable technique for characterizing nucleosomal arrays.
Histone Protein | Σ276, Unfolded Proteins cm-1M-1 | Molecular Weight Da |
H2A | 4,350 | 13,960 |
H2B | 7,250 | 13,774 |
H3 | 4,640 | 15,273 |
H4 | 5,800 | 11,236 |
Octamer | 44,080 | 108,486 |
Table 1. Extinction coefficients and molecular weights of Xenopus laevis core histones and renatured histone octamer.
Figure 1. A. Elution profile from the S200 column as described in section 2. The small peak at about 44 ml is due to large histone aggregates. The prominent peak at 67 ml is the histone octamers. The broad shoulder from 76-90 ml contains the H3/H4 tetramers and H2A/H2B dimers. B. 20% SDS-PAGE of selected fractions from the S200 column. Early fractions from the octamer peak should be collected as they are least likely to be contaminated by the non-octameric histone complexes. In this case fractions 64-67 were pooled and saved for nucleosomal array reconstitution. Click here to view larger figure.
Figure 2. A. ProteomeLab software screen capture of a single scan collected at 3,000 rpm (with labels added). Note that the sample does not sediment at this low speed. The single scan is used to set the range of measurements for the AUC cell scan (step 4.6). B. Screen capture of a series of sedimentation velocity scans obtained using the UltraScan program (with labels added)26. This series of scans is edited to generate a data set for analysis (see step 5.1).
Figure 3. A screen capture from UltraScanII. The red and green lines are two different methods for viewing the distribution of sedimentation coefficients in UltraScan. The red line is the integral distribution of sedimentation coefficients, while the green is the derivative. Extra information on interpretation can be found in the results section.
Figure 4. AFM. A. Sedimentation velocity profile for 601207 x 12 arrays assembled with mouse octamer indicating the average sedimentation coefficient is 27S. B. The same arrays in A were imaged by AFM and the number of nucleosomes counted in several images were plotted in MS Excel. The plot indicated that a majority of arrays had 10-11 nucleosomes corroborating the AUC data. C. A 500 x 500 nm scan of 601207 x 12 nucleosome arrays with the linker DNA clearly visible. The top right panel is the amplitude trace and the middle right panel is the phase trace for the array shown in C. The bottom right panel is the same height trace shown on the left but with a free hand line drawn through the nucleosomes to determine the height profile of the nucleosomes. D. Height profiles of the nucleosomes in the above image demonstrate that all nucleosomes range within 1.5-2.5 nm height as previously reported 40.
Model nucleosomal arrays are a very useful tool for the in vitro study of chromatin structure and function. For example, they have been widely used to study the mechanism of chromatin fiber condensation in solution 30-34, and made it possible to obtain an x-ray structure of a tetranucleosome 35. More recently they have proven useful in deciphering the structural effects of specific core histone variants, mutants and posttranslational modifications14-16,36. Here we describe a general method for the assembly of model nucleosomal arrays from nucleosome positioning DNA and recombinant core histones.
The reconstitution of nucleosomal arrays from purified octamers and 601207 x 12 DNA is straightforward, involving several dialysis steps that sequentially lower the NaCl concentration from 2 M to 2.5 mM. The most difficult part of the protocol is to use an r-value that yields the desired template saturation level. The appropriate r-value is first determined empirically on a small scale and then repeated on a larger scale to generate the nucleosomal arrays used for experiments. In our case, we were attempting to obtain 601207 x 12 DNA templates mostly saturated with 12 nucleosomes per DNA. The sedimentation coefficient of a fully saturated 601207 x 12 nucleosomal array is 29 S, while the same DNA template with only 11 nucleosomes per DNA sediments at ~27S 29. Thus, sedimentation velocity in the analytical ultracentrifuge provides a very sensitive method for determining the nucleosome saturation level after reconstitution. We analyzed our data using the enhanced van Holde-Weischet method, which yields a diffusion-corrected sedimentation coefficient distribution. This information is essential because it tells one how homogeneous or heterogeneous the sample is after reconstitution. In other words, for a 601207 x 12 DNA template, it indicates the fraction of the sample that has 12 nucleosomes per DNA, 11 nucleosomes per DNA, etc. Figure 3 shows the results of the enhanced van Holde-Weischet analysis of 601207 x 12 nucleosomal arrays reconstituted at an r of 1.1, in which roughly 30% of the arrays are over saturated. The utility of the sample is usually tied to the percentage of saturated arrays, but is dependent on the experiments the arrays will be used in. Some applications may require very homogenous and/or saturated arrays. A number of methods exist for improving the homogeneity and saturation of nucleosomal arrays.
In this case the oversaturated arrays could be removed by selective precipitation upon the addition of MgCl237. More homogenous arrays can also be obtained by purifying the sample using sucrose gradient centrifugation, preparative gel electrophoresis, and ion exchange chromatography10,13. A modified nucleosomal array reconstitution method calls for adding short competitor DNA to the samples before reconstitution through salt dialysis38,39. This allows one to assemble nucleosomal arrays with an excess of histone octamer without over saturating the DNA template. Nucleosomal arrays reconstituted using competitor DNA will likely require a purification step for the removal of the competitor DNA and extra histones.
Even after small scale pilot array assemblies, it is possible that nucleosomal arrays reconstituted at a large scale will not be properly saturated. In order to avoid wasting the template DNA and histone octamer in the sample, it is possible to fix over or under saturated arrays. If the arrays are over saturated, extra DNA can be added to the sample. If the arrays are under saturated, extra octamer can be added to correct it. However, adding octamer to arrays already dialyzed into low salt can result octamer dissociation. If adding extra octamer or DNA to arrays, dialyze the arrays back into 2 M NaCl before adding extra octamer or DNA to the bulk sample. Repeat step dialysis for fixed samples from high to low salt as per step 3.4. The amount of octamer to add in order to correct the arrays can be estimated from sedimentation coefficients for under saturated arrays29. After adjusting the sample of nucleosomal arrays, measurements of saturation level should be made once again.
While AFM is a powerful method for characterizing nucleosomal arrays, it is complicated and a labor intensive process. This makes it a poor technique for screening small scale reconstitutions, but an excellent technique for the characterization of large-scale samples and for the study of chromatin organization. Previously we have used AFM to visualize "macro" particles generated by a macroH2A deletion construct that was "hyper-responsive" to even low MgCl2 concentrations. Likewise, Montel et al. (2009) have shown that H2A Bbd variant causes the nucleosome arrays to be more "open" compared to wild type arrays. Therefore, AFM is a reliable technique for quality control, as well as for the study of chromatin fiber structure in general.
The authors have no conflicts of interest.
This work was supported by NIH grants GM45916 and GM66834 to J.C.H. and a fellowship from the International Rett Syndrome Foundation to A.K. This work was also supported by NIH grant GM088409 and Howard Hughes Medical Institute contributions to K.L.
Name | Company | Catalog Number | Comments |
(3-Aminopropyl)triethoxysilane | Sigma-Aldrich | A3648-100ML | |
6-8 kDa MWCO Dialysis Tubing | Fisher | 21-152-5 | |
HiLoad Superdex 200 16/60 Column | GE | 17-1069-01 | |
Vivaspin 50 kDa MWCO Centrifugal Concentrator | Sartorius | VS2031 | |
12-14 kDa MWCO Dialysis Tubing | Fisher | 08-667A | |
Illustra Sephacryl S-1000 Superfine | GE | 17-0476-01 | |
XL-A/I Analytical Ultracentrifuge | Beckman-Coulter |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone