Method Article
細胞のイオン輸送は細胞内 pH モニタリングによってしばしば評価される(pH私)。遺伝子 Encoded pH 指示薬(GEpHIs)は、そのまま細胞内 pH の光学的定量化を提供します。このプロトコルは細胞前のヴィヴォライブ イメージング pHerry とキイロショウジョウバエのマルピギー氏管の細胞内 pH の定量化の詳細については、擬似レシオ メトリック遺伝子にエンコードされた pH インジケーター。
上皮膜イオン輸送は本質的な細胞の電気化学勾配の維持と同様、全身のイオンの恒常性に不可欠です。多くのイオン輸送体 (pH私) 細胞内 pH の影響を受けて、トランスポーター活性を評価するための便利なツールは、このように pH は私を監視します。モダンな遺伝子にエンコードされた pH-指標 (GEpHIs) は細胞および細胞内の規模で pH私そのままなセルの光学的定量化を提供します。このプロトコルは細胞 pH私の規制のキイロショウジョウバエのマルピギー氏管 (MTs) で前のヴィヴォライブ イメージングによる pHerry、pKで擬似レシオ メトリック GEpHI リアルタイム定量化をについて説明します、細胞質の pH 変化を追跡に適しています。抽出された大人のフライ MTs は単一細胞層上皮の形態学的、機能的に独立したセクションで構成され、上皮の輸送の調査のためのアクセス可能で、遺伝的に扱いやすいモデルとして利用できます。GEpHIs は、従来の pH に敏感な蛍光染料とイオン選択性電極上のいくつかの利点を提供しています。GEpHIs 適切な促進者の要素が使用異なる細胞集団にラベルを付けることができます。この方、前のヴィヴォ体内、および本質的に不均一であるその場で準備に便利です。GEpHIs もそのままティッシュで繰り返される色素の治療や組織の外部化を必要とせず時間をかけて pHiの定量化を許可します。現在の GEpHIs の主な欠点は、組織の損傷の応答のゾル性細胞質包有物の集約し、過剰発現を構築する傾向です。抽出されたフライ MTs の機能的に異なるプリンシパルと星状細胞に基底プロトン (H+) 輸送の評価を通じて、この議定書では、これらの欠点、彼らのソリューション、および GEpHIs の固有の利点を示した。技術と説明する分析が容易に適応できる幅広い脊椎動物と無脊椎動物の準備と特定のトランスポーターを介してイオン流束の複雑な測定の演習を教えるからアッセイの洗練されたことができます。
このプロトコルの目的は、遺伝子にコードされた pH インジケーター (GEpHI) を用いた細胞内 pH (pHi) の定量化と基底モデル昆虫 (+ H+輸送を評価するためのこのメソッドの使用方法を示すキイロショウジョウバエ) 腎構造のマルピギー氏管 (MT)。MTs は、ショウジョウバエの排泄器官として、いくつかのキーの点1に哺乳類のネフロンに機能的に似ています。MTs は、胸郭、ハエの腹部の (前部と後部) の尿細管の 2 組として配置されます。各 MT の単一細胞上皮管が根尖を明確なの代謝活性の主細胞から成る (内腔) 介在の星状細胞と同様、基底 (hemocoel) 極性と。発達個別のセグメント、特に初期拡張尿管2に結合分泌の主要なセグメント、経過セグメントは、セグメントおよび形態学的、機能的には、3 前方 MTs が構成されます。携帯電話のスケールで内腔の上皮細胞のイオン輸送、頂端膜 V-atpase3アルカリ金属/H+交換と基底 Na+K+で実現-atp アーゼの4、チャンネル5、Na+は、内向き整流性 K+ -Cl−/HCO3−交換 (NDAE1)6、および Na+K+を駆動-2 Cl−共輸送 (NKCC;Ncc69)7、星状細胞仲介 Cl- 、水輸送8,9。この複雑なアクセス可能な生理学的システムは、ショウジョウバエの遺伝学的および行動の多様なツールセットと組み合わせた場合の内因性イオン伝導機構の調査のための優秀な機会を提供します。
このプロトコルのための理論的根拠は動作し、他のモデルのシステム ツールのエクスポートの統合セルからの潜在性の上皮膜イオン輸送を研究するため遺伝子組み換え可鍛性システムを記述します。PHerry10の式、グリーンの pH に敏感な超黄道 pHluorin11,12 (セフ) と赤の pH に依存しない mCherry13MTs での融合から派生した GEpHI を許可の H+輸送の定量化高 K+/nigericin 校正テクニック14を介して単一の mt 野細胞。多くのイオン輸送体は、H+同等を移動、細胞内 pH は私の定量化はさまざまなトランスポーターを介してイオン移動の関数表現として機能します。ショウジョウバエMT モデル システムはまた組織特異遺伝子15と細胞イメージング全体オルガン試金17と組み合わせて使用することができますが、RNA 干渉 (RNAi)16式の強力な遺伝的ツールを提供しています,18,分子から行動への垂直統合の堅牢なツールセットを作成する尿細管機能の19 。これは対照的に他の多くのプロトコルに歴史的にそのような測定が複雑に依存している、上皮の生物学の評価とマイクロ郭清、洗練されたイオン選択性電極20,21, を大変なの略します。高価な pH 感受性色素を22制限荷重要件と異種組織の細胞特異性悪い。GEpHIs は、広く pH私携帯型23の様々 な測定に使用されています。初期の作品は固有 pH 感受性の緑色蛍光タンパク質 (GFP) pH私培養上皮細胞24を監視するを悪用されるが、過去 20 年を見た使用ニューロンで25、グリア26、菌類27 GEpHIs、植物細胞28。GAL4/UA 式システム15とショウジョウバエMT の生理ユーザー補助の遺伝的構造の細胞ターゲットの可能性の組み合わせはこの pHの調査のための理想的な準備をする私規制と上皮膜イオン輸送。
pH私規制は何十年も研究されている、生活に不可欠です。MT の準備では、pH私の調節の生理学を教えるが、また実行する堅牢なモデル洗練された pHi規制前のヴィヴォとin vivoの調査を提供しています。このプロトコルはショウジョウバエNH4Cl パルス酸法21の読み込みを使用して MT の上皮細胞の基底膜で H+運動の定量化をについて説明しますが、pH 指示薬としては遺伝子エンコードすると、任意の影響を受けやすい遺伝子導入とライブ イメージングの準備にこれらのメソッドとその理論的枠組みを適用できます。
このプロトコルのすべてのステップはメイヨー クリニック (ロチェスター、ミネソタ) の動物の使用に関するガイドラインを遵守します。
1. 飼育をフライします。
2. ポリ L リジン スライドの準備。
3. 解剖皿とガラス棒の準備
図 1: キイロショウジョウバエマルピギー管を処理するためガラス棒を製造します。
A ~ E。冷暖房山地矢印を処理に適したテーパーを生産し、角度にガラス棒を引いてのプロセスは適用される力の方向と大きさを示します。F. 適切に加工ガラス ツールの写真。スケール バー = 10 mmこの図の拡大版を表示するにはここをクリックしてください。 。
4. ソリューションおよび灌流システムの準備
注: 灌流システムは、メーカーによって異なります。このプロトコルは、入力フロー率調整器と真空駆動の流出がここで説明されているように MTs を任意の灌流システムで動作するように合わせることができる取付方法重力供給 8 チャンネル オープン タンクに基づいています。
図 2: 灌流システムと構成をイメージングします。
同時を介して MT 基底トランスポート機能の生理学的評価のために必要なコンポーネントは、蛍光イメージングかつ迅速なソリューションの交換を住んでいます。示されているガス行は省略可能で、HCO3-輸送の評価実験の拡張を許可します。この図の拡大版を表示するのにはここをクリックしてください。
図 3: NH4Cl パルス灌流装置のフロー図の実験します。
矢印には、フロー パス、バルブ切り替えポイントが描かれています。ソリューションは、貯水池から標本に重力流による移動し、真空吸引による廃棄物のフラスコに試料室から描画します。 この図の拡大版を表示するのにはここをクリックしてください。
5. 大人のショウジョウバエ前方のマルピギー氏管の解剖。
6. イメージング プロトコルと尿細管健康の検証
メモ: このプロトコルは GFP (セフ) と RFP (mCherry) フィルター セット逆広視野 epifluorescent 顕微鏡で実行されます (470/40 nm 励起 (ex)、515 nm longpass 放出 (em)、ex、500 nm の二色性と 546/10 nm、590 nm longpass em、565 nm 二色性)、10 X/0.45 空気目的、ライブ イメージ キャプチャ、およびイメージ投射ソフトウェア単色カメラ。プロトコルは任意の直立に適応することができますか、または倒立顕微鏡を GFP と RFP 光学系と画像集録ソフトウェア、切り替える自動フィルターで最適な露出時間、光の強さとビニング パラメーター異なります。すべての分析、蛍光強度は、後の投資収益率を使用して各チャネルの背景差分が含まれていない蛍光信号の投資収益率に隣接する利益率 (ROI) の地域の平均のピクセルの輝度を分析して必要があります。
7. キイロショウジョウバエマルピギー管Ex Vivoで pHerry の校正。
8. Ex Vivoマルピギー氏管上皮から基底酸押出の定量化。
健康な組織や前方の MTs を適切に識別、このプロトコルの成功に不可欠です。解剖時に注意が必要なく、直接タッチする MTs とだけハンドルに直接 MTs をグリップとして尿管によってそれらは (図 4 a- B) の破損に 。MTs はスライドにフラットを掃引、細管を可能な限り少し触れられなければならないし、これを回避余分な動きは単一細胞上皮層 (図 4) に損傷を与えます。正常解剖前方 MTs も上皮細胞と形態的に異なる尿細管セグメントの細胞質を赤と緑の蛍光分布が表示されます。不適切な血流によって尿細管損傷またはミスなしの対緑の集計と赤い蛍光性の集計が表示され、誤認後部 MTs が表示されます (図 4) 遠位尿管近位の盲目の端から制服の形態.
PHerry の適切な機能を確認する必要がありますしかし生理学的評価として形態。適切な pH センサーを確認する最も適切な方法は、NH4Cl パルスを適用することです。これらの条件で、緑のセフ信号が予想される pH の変化を報告しなければならない (pH私NH3としてパルス中の上昇が NH4+ K+トランスポーターを通って入り、セル、パルスの間に漸進的な低下に入るとチャネル、および急激な酸性化および NH4Cl 撤退21、赤 mCherry の信号は一定にしながら時に徐々 に回復 (図 5 a- B)。セフ信号の変化の大きさと細胞型、プロトコルと異なります、mCherry 信号はすべてのケースで安定したはずです。個々 の実験の間に mCherry 信号の変化を示す運動成果物またはセンサー集合体細胞の損傷のための進歩的な世代。後者は pH は私の定量化を防止、回避する必要があります。NH4Cl パルスの完了時に、2 点校正を行うことが重要だ (校正 iPBS、pH 7.4 と 9.0、10 μ M nigericin)、安静時 pH私7.4 付近を確認し、現在の撮像パラメーターがの彩度をもたらさないことを確認するには蛍光蛍光 pH 9.0 (図 5) で最大化するとします。健康的な MTs; とプロトコルを繰り返す必要があります休憩 pH が 7.4 よりかなり低いの場合低い光強度または露光時間と飽和 pH 9.0 の場合は、プロトコルを繰り返す必要があります。十分な撮像パラメーターが決まったら、それら変更しないでください実験や校正の間絶対蛍光比を使用する場合。PH は私の絶対定量に pHerry セフの完全体系的な関連付けが必要です pHerry の擬似レシオ メトリック自然セル径の変更などで準備運動しやすい動き補正の方法を提供できますが、/pH に私nigericin/高 K+テクニックを通して mCherry の比率。健康な準備で pHerry の校正は、明白な pK、携帯型・適合条件 (図 5) によって 7.1 7.4 と一貫した検量線になるはずです。準備が mCherry の集計は避け、比率値の正規化蛍光比 1.0 の pH に対応するような同様の結果 (図 5E) を得られる私7.0 です。かどうか点校正と正規化曲線が使用されます、各準備のため撮像パラメーターを最適化できます。
細胞のタイプ間の pH 調節機構を比較する校正 pH私トレースを使用できます。ショウジョウバエの GAL4/UA 式システムは、前方の MT (図 6 a) 星状細胞とプリンシパルの pHerry を表現する使用できます。pH私規制は、NH4Cl パルスと pH私回復率を定量化酸負荷セルによって評価できます。これは、異なる実験条件でより迅速な回復 (と τ のための低値) より迅速な H+流出とセルに表示されます、崩壊定数 (τ) を抽出する復旧フェーズに指数関数をフィッティングによって実現できます。この分析に基づき、MT の星状細胞は主細胞 (図 6 b) よりもより強力な酸押し出しが表示されます。この分析は、安静時の pH は私、酸負荷と緩衝能の程度は実験グループ間で類似限り保持されます。ただし、これらの条件が満たされない場合は、アカウントの多くの細胞の細胞質 (βi) の組み込みの緩衝能力は観察のため pH 依存性35,37,38する必要はこのように pH私変更異なる pHiでのレートが直接比較できない場合があります。この場合において、指数曲線に合わせて酸押出速度 (JH +) をプロットする関数としての使用をすることができます NH4Cl パルスと以前に決定された組み込みバッファキャパシティ (βi) 酸押出相次pH は私の酸の押し出し (方程式 3 & 4) の補償率を判定するとします。酸の読み込みと pH は私を休憩の違いが原因のそれは明らか一度経過セグメントの主細胞で酸の押出を上回る星状細胞 (図 6) のこと。ながら、説得力のある、この分析は扱いません測定 pH は私はボリュームの機能膜を越えて酸押出は膜面積の関数。JH +興味のセルの容積比表面積によって分割セルの大きさと形態の違いを補正できるように単位時間 (式 5)、単位表面積あたりの酸同等のモグラの値になります。約 2 つのプリンシパルのセルは経過のセグメントでの MT のまわりを構成する、従って単一セルは、管 (内径 24 μ m; 外径 48 μ m 高さ 50 μ m) の半分としてモデル化することができます。星状細胞はより小さく、バー状の MT2の経過のセグメントにする傾向があります。表面積および体積の正確な定量化は困難ですが、星状上皮の形状 (円柱高さ 50 μ m と 10 μ m の直径) の保守的な近似を示す表面積体積比の少なくとも 2 に主細胞の x。これを考慮して星状細胞酸系フラックスは大幅に移行の主細胞の下と最初のセグメント主細胞 (図 6) に実際に近づくことを明らかにします。
図 4: 大人のショウジョウバエ前方のマルピギー氏管の解剖。
A. 冷蔵シュナイダー中微細鉗子の 2 ペアと前方の MT 除去の模式図。「A. 細管」前方山」P. 細管」を = = 後部山B。取得し、細いガラス棒を使用して抽出した MTs をマウントするプロセス。C. プロセスの完全な長さを付着のイメージングおよび生理学的評価のためのスライドに MTs を抽出しました。D、セフの代表広視野画像 (470/510 nm ex/em) と mCherry (556/630 nm ex/em) UA pHerry駆動capaR GAL4を描いたによって健康な前方のコンポーネントが MTs、前方 MTs 損傷不十分な血流と。誤認後方山地注明確な拡張ブラインド初期セグメント、 UA pHerry capaR GAL4, と遠位メインによって駆動されるときの式が比較的増加収縮経過セグメントを健康な前方 MTs に表示セグメント。対応するセフ蛍光 mCherry 蛍光の MTs 表示顕著な集合体を破損していません。後部の MTs がない形態的に異なるセグメントの直径に統一されています。スケールバー = 50 μ m. この図の拡大版を表示するのにはここをクリックしてください。
図 5: 検証とマルピギー氏管の pHerry の校正。
A。、セフの代表広視野画像 (470/510 nm ex/em) と mCherry (556/630 nm ex/em) コンポーネントUA pHerry capaR GAL4健康な前方山地"投資収益率"を描いたによって駆動のマーク信号関心領域。"BG"同じチャネルの信号の投資収益率を求めた後の関心の背景領域をマーク。スケールバー = 50 μ m. B.20 s 40 mM NH4Cl パルス応答で pHerry のセフと mCherry の信号の相対的な蛍光の変化。セフ信号パルスの間に特徴的な増加が表示されます、mCherry 信号が安定しているに注意してください (アルカリを示すもの、すなわち増加 pH は私)、[ウォッシュ アウト] (すなわち酸性を示す時に急激な減少低下した pH は私)。C. pHerry (セフ/mCherry) の蛍光比は校正 iPBS (10 μ M nigericin、130 ミリメートル K+、pH 7.4 と 9.0) で 30 分インキュベート後 B の追加データ データから計算します。D. 絶対 pHerry 比から検量線 (セフ/mCherry) の機能は、校正 iPBS 8 の pH 値の 1 つにバッファーへの露出の間に pH は私を課される。灰色の円は、個々 の値のフォーム 8 準備です。黒の正方形、バーが平均 ±SD。 曲線はボルツマン フィット。E. D と同じデータ正規化など pH 7.0 で蛍光比は 1.0。曲線は s 字型カーブ フィット (ステップ 7.4、方程式 1を参照) を変更します。この図の拡大版を表示するのにはここをクリックしてください。
図 6: 定量化のマルピギー氏管の上皮における酸性押出。
A. 前方の MT の主細胞 (pHerry) からセフ蛍光の広視野画像 (左、 capaR GAL4ドライバーによって駆動される) 動かされ、前方の山の星状細胞 (右、 c724 GAL4)。星状細胞はバー状の最初のセグメントは、経過のセグメント内の変数には、主なセグメントに異なる細胞突起を表示に注意してください。スケールバー = 100 μ m. B.PH私変更 20 s 40 mM NH4Cl (経過セグメント、最初のセグメントの主細胞および経過のセグメントの星状細胞のプリンシパルのセル) 内に示された関心領域のパルス応答を校正します。破線の曲線は、単一指数フィットは記載の減衰定数 (τ) 値の派生元となる Cl 撤退次の NH4酸回収フェーズに適用を示します。C. 酸押出速度 (JH +) プロットに由来する指数関数 pHi収まる B に見られるよう手順 8.3.1 JH +計算 (式 3) を参照してください。破線の曲線は、指数フィット pH私グレーのボックスで示される重複の領域内の各データ プロットに適用です。D. 酸系フラックス プロットとして、指数から派生した機能 pHi収まる B や方程式 5に見られる。破線の曲線は、指数フィット pH私グレーのボックスで示される重複の領域内の各データ プロットに適用です。この図の拡大版を表示するのにはここをクリックしてください。
iPBS | NH4Cl パルス iPBS | 校正 iPBS | |
塩化ナトリウム | 121.5 | 81.5 | 0 |
NH4Cl | 0 | 40 | 0 |
KCl | 20 | 20 | 130 |
グルコース | 20 | 20 | 20 |
バッファー | HEPES;8.6 | HEPES;8.6 | MES、HEPES、またはタップ;8.6 |
NaHCO3 | 10.24 | 10.24 | 0 |
NaH2PO4 (1 H2O) | 4.5 | 4.5 | 0 |
NMDG | 0 | 0 | 30.5 |
pH | 6.8 | 6.8 | 異なります |
浸透圧 | 350 ± 5 | 350 ± 5 | 350 ± 5 |
表 1: 実験的フライ ソリューション。
iPBS ソリューションを用意しています部屋の温度と pH は、塩酸と水酸化ナトリウムの滴定によって設定されます。塩酸と NMDG で校正溶液を滴定します。校正ソリューションのバッファーが望ましい pH に基づいて変化させる [2-(N morpholino) ethanesulfonic 酸 (MES)、pH 4.0 6.0; = 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 酸 (HEPES)、pH = 6.5-7.5。N-[トリス (ヒドロキシメチル) メチル]-3-aminopropanesulfonic 酸 (タップ)、pH = 8.0 9.0]。MM (単位なし) pH および浸透圧 (モル/kg) 以外のすべての値。DMSO のストックの nigericin は、使用の直前に 10 μ M の最終的な集中に校正ソリューションに追加されます。
GEpHI | 励起 (nm) | 排出 (nm) | pK、 | ノート |
Superecliptic pHluorin (セフ)11 | 395, 488 | 530 | 7.2 | 大規模な線形範囲大きい倍 (50 倍) 増加 pH 敏感な蛍光線形範囲にわたって |
PtGFP42 | 390, 475 | 540 | 7.3 | 植物細胞で使用する検証 |
Superecliptic pHluorin - mCherry 融合31 | 488, 556 | 530, 620 | 7.2 | いくつかの細胞の生成対 mCherry 集計 |
ClopHensor40 | 488, 545 | 525, 590 | 6.8 | pH および Cl-センサー。更新された ClopHensorN30ローグタイプ ニューロンで以下の集計を示しています。 |
pHerry10 | 488, 556 | 530, 620 | 7.2 | 更新されたセフ mCherry 融合 ClopHensor からリンカー |
mNectarine44 | 558 | 578 | 6.9 | 退色のための補正が必要な |
pHluorin245 | 395, 475 | 509 | 6.9 | レシオ メトリック pHluorin12のバリアント |
フレッド47 | 440, 585 | 610 | 7.8 | 長いストークス シフト mKeima49, FLIM NIR 2 光子励起イメージングと互換性の更新その他 |
pHuji43 | 566 | 598 | 7.7 | マップル; の他いくつかのセルの予想される pH の感度よりも低い |
pHtomato46 | 550 | 580 | 7.8 | 小胞エンドサイトーシス、貧しい cytocolic ph 非感受性を追跡する検証 |
pHoran443 | 547 | 561 | 7.5 | 強化された pH 敏感なオレンジ色蛍光タンパク質 |
・ サイファー 248 | 427, 504 | 525 | 8.1 | レシオ メトリック サイファー51、もともとミトコンドリアの測定のための明るいバリアント |
表 2: 公開されているゾル性細胞質 GEpHIs のリスト
励起マキシマ、発光極大および明白な pKの値はおおよそ、式システム、イメージング、および校正方法によって異なります。FLIM 蛍光寿命イメージングを =。NIR 近赤外 =。
ショウジョウバエMTs で pH は私の定量化の成功は健康抽出された MTs と取り付けと郭清 (図 A - C) の質によってまったく異なります。したがって、組織としての慎重な取り扱いは説明が不可欠です。新鮮な PLL でコーティング スライド大幅にソリューションにさらされて以前のスライド援助 MT マウントよりもはるかに多くの接着剤をする傾向にあります。注意取り付けは MT の明瞭な区分 (図 D) の識別にも役立ちます。健康的な MTs mCherry 集計を削減し、それぞれ酸押出のより一貫した多くの定量化を降伏によって pHerry と機能的アセスメントの校正を容易にします。いくつかのケースで mCherry 集計を避けることは不可能です、実験条件が本質的に MT 上皮を損傷したり、蛍光レポーターの重要な過剰発現を生成これらのケースで擬似レシオ メトリック校正正規化蛍光比 1.0 pH私7.0 に対応、ポイント校正の定量化 (図 E) を許可するように。ガラスとプラスチックに固執する、イオノフォアとして nigericin にイメージングと灌流システムの永続的な要素の公開を避けるために点校正時に注意が必要があります。実験操作が、実験中に細胞損傷を引き起こすような状況でも擬似レシオ メトリック校正はできませんすなわちこの損傷は進歩的な見かけになります mCherry 蛍光性の増加その結果。これらの後の場合、セフ蛍光信号は正規化された検量線で使用することができ、イメージング、運動成果物の焦点シフト修正もはや警告の校正をポイントします。
GEpHIs では、pH は私の定量化に蛍光染料と比較していくつかの一般的な制限を運ぶ。膜の整合性とセル健康39、指標として色素保持を使用できますが、GEpHIs 用と同等の試金はありません。など、結果を混同する細胞の損傷が予想される場合、独立の手段を通じて準備健康を監視する必要があります。GEpHIs は潜在的生体内で妨げた最小限の準備から画像を許可が組織の整合性は本質的に実験的操作を制限し不可能な校正のポイントを作ることができます。PHerry と他のゾル性細胞質の二重蛍光 pH 指示薬 (ClopHensor40) などを使用して固有の別の特定の制限が派生とは関係なく互いと pHの蛍光を変更する 2 つの同時の傾向から.RFP 集計アイテムはこの制限の最も重要な症状ですが、数量は 1 つまたは両方の蛍光物質の変質によっても侵害できます。したがって、イメージ投射プロトコル退色は、長い露出時間と獲得率につながることができますを最小限に抑えるために調整する < 0.2 hz 長い露光時間は急激な pH は私をレポートするのに失敗がシフトします。セフ蛍光は pH 6.8 7.8 ほとんど準備から pH は私に線形相関を示していますが、そのような測定の精度は nigericin/高 K+法の精度に依存します。Nigericin は、K+/H+イオノフォアとして機能し、, 細胞外 [K+] 細胞内 [K+] に依存して適切な校正。細胞内 [K+] の見積もりは利用できるまたはすべての実験装置の容易に入手ではありません。PH私定量の精度になります細胞内 [K+] の見積もりとして、信頼性の高いが、相対変化率の pH は私は一貫性のあるになります。細胞内 [H+] にこの制限と pH は私の逆対数の関係を考えると、それは、常にデータを報告することが望ましい pH私変化率の酸押出率 JH +(図 6)、または酸系フラックス (図 6) ではなく、pH は私の絶対的な変化。データの分析酸系フラックスの表面の違いを補正する付加的な利点があり、細胞のタイプ間の容積の比率には。
大人から通訳データ飛ぶ MT 準備このプロトコルで記述されているとき、いくつか注意事項を高く評価する必要があります。初期、経過と主なセグメントの形態の区別が MTs2に機能および遺伝的ドメインの本当の多様性の簡素化。さらに、このプロトコルは基底酸トランスポーターの機能を検出するように設計されて頂輸送の影響を与える pHi測定も可能です。主にそのソリューション exchange により、MTs (ステップ 5.9) をマウントするときに尿管をシール基底面に発生しますが、イオンのパラの細胞および根尖部の動きが基底トランスポートを変更する最終的に pHiに影響まだ、ルーメン/ゾル性細胞質のイオン勾配の細胞質側は。根尖部の絶対分離基底関数は独立して灌腔ないによって実現でき、MT がこのようなメソッドの基底面大幅にもっと技術的に要求、ピペット穿刺41 を必要としています。.
GEpHIs は、 pH を測定する従来の方法に比べて多くの利点を示し、遺伝的可塑性と組み合わせるとショウジョウバエMT 準備の低コスト、これらの強みが増幅されます。PH は私の定量化は歴史的に蛍光染料 (2',7'-Bis-(2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein (BCECF)22またはイオン選択性電極20 を介して複雑な電気生理学的評価などに頼っています。 ,21。PHerry は、エンコード遺伝子それ (紹介主細胞と MT、図 6の星状細胞) と、特定のプロモーターによって特定の細胞集団に表現できます、遺伝子導入、対象となるすべての組織は、影響を受けやすいです。トランスフェクション、またはウイルスによる感染症。染料は、個々 の準備とない異種組織の細胞特異性を伝える可能性があります複雑なアプリケーション プロトコルのコストによって制限されます。イオン選択性電極の作製と測定専用機器が必要、GFP と RFP がセットをフィルター pHerry 従来の唯一の広視野 epifluorescent 顕微鏡が必要ですが。染料および電極の使用中挽きたて抽出された組織で、体内時間を GEpHIs することもできます興味のティッシュに光アクセスだけでなく、物理的な必要があります。PH私内因性バッファリングの存在下での定量化が可能 pH私規制ない他の技術としての細胞生理学を評価するとき、そのまま準備のライブ イメージングのための機会、特に関心のメカニズム。
ショウジョウバエアダルト MT 準備細胞 pH 調節とイオン輸送に興味がある人の多くの魅力的な機能を示します。ショウジョウバエ飼育は高価と遺伝子にコードされたバイオ センサー構造と RNAi 式挿入などのツールが用意されて様々 なストック センター (インディアナ大学ブルーミントンショウジョウバエストック センターからウィーンショウジョウバエ研究センター)。ショウジョウバエMTs は、上皮のイオン輸送の研究に最適な偏光の上皮細胞の単一の層で構成されます。基底輸送することができます簡単に試金する (ここに示す)、頂の完全な評価が、基底イオン移動はマイクロ ピペット穿刺41で可能です。さらに、臓器機能アッセイ ラムゼイ分泌の試金17 , シュウ酸カルシウム沈着18よ特徴付けられたし、流動分泌のモデルに上皮細胞生理学の相関関係を許可するよう、腎結石、それぞれ。これらの機能は、堅牢な解析のための機会を提供する、epifluorescent 顕微鏡の低コストと全体の可用性は、ショウジョウバエMT モデル細胞および全体器官生理学のデモンストレーションに最適な教育研究所です。
これらのメソッドの習得は、基底上皮イオンの堅牢なモデルを輸送、まだ H+フラックス、アクセス可能な大人のショウジョウバエMTs によって pH私規制の定量化を許可します。GEpHIs の pHerry は他の無脊椎動物の細胞型の pHi規則を評価するために簡単に合わせることができるよう培養動物細胞および生体内で準備。新しい GEpHIs の開発は新しい世代可視スペクトルにまたがると集計アイテム30,42,などの現在の制限に対処する遺伝子にコードされたカルシウムの続く可能性が高い43,44,45,46,47,48,49GEpHIs は、ミトコンドリアのマトリックス pH50,51、を報告する広く使用されているすでに、細胞内ターゲティング戦略が小胞体に52、核バイオ センサーをローカライズする存在。53、シナプス小胞12,43, と細胞質54 55細胞膜の外面 (パブリッシュされた試薬の一覧については表 2を参照)。ようツールが利用可能になる彼らが許可の Ca2 +ハンドリングなど細胞内シグナル伝達、細胞生理学、および全体の器官機能の他の面と細胞内 pH の調節の垂直統合様々 な脊椎動物の間で無脊椎動物の準備。
著者が明らかに何もありません。
MFR. AJR を DK100227 は、T32 DK007013 によって支えられ、この仕事は、NIH の DK092408 によって支えられました。著者は、CapaR GAL4 と c724 GAL4 博士ジュリアン A.T. ダウを感謝したいショウジョウバエ株。我々 はまた実験飛ぶ十字架を維持支援のためヤコブ B のアンダーソン氏を感謝します。
Name | Company | Catalog Number | Comments |
Poly-L-Lysine (PLL) Solution | Sigma-Aldrich | P4832 | Store at 4 °C, can be reused. |
Nigericin Sodium Salt | Sigma-Aldrich | N7143 | CAUTION: Handle with gloves. Store as aliquots of 20 mM stock solution in DMSO at 4 °C. |
Adhesive Perfusion Chamber Covers, adhesive size 1 mm, chamber diameter × thickness 9 mm × 0.9 mm, ports diameter 1.5 mm | Sigma-Aldrich | GBL622105 | Can be substituted as needed to match perfusion system. |
Sylgard 184 Silicone Elastomer Kit | Ellsworth Adhesives | 184 SIL ELAST KIT 0.5KG | Available from multiple vendors. |
Helping Hands Soldering Stands | Harbor Freight Tools | 60501 | Available from multiple vendors. |
Open Gravity-fed Perfusion System with Valve Controller, 8 to 1 Manifold and Reserviors | Bioscience Tools | PS-8S | Any comparable perfusion system can be used. |
Flow Regulator | Warner Instruments | 64-0221 | Can be substituted as needed to match perfusion system. |
Schneider's Medium | Fisher Scientific | 21720024 | Store at 4 °C in sterile aliquots. |
#5 Inox Steel Forceps | Fine Science Tools | 11252-20 | Can be substituted based on experimenter comfort. |
35 x 10 mm polystyrene Petri dish | Corning Life Sciences | Fisher Scientific 08-757-100A | Exact brand and size are unimportant. |
75 x 25 mm Microscope Slides | Corning Life Sciences | 2949-75X25 | Exact brand and size can vary as long as perfusion wells are compatible. |
Filimented Borosilicate Capillary Glass, ID 1.5 mm, OD 0.86 mm, thickness 0.32 mm | Warner Instruments | 64-0796 | Filiment not necessary, glass can be substituted to match perfusion tubing and perfusion wells. |
Tygon Tubing, ID 1/16", OD 1/8", thickness 1/32" | Fisher Scientific | 14-171-129 | Available from multiple vendors, can be substituted to match perfusion system. |
Vacuum Silicone Grease | Sigma-Aldrich | Z273554 | Available from multiple vendors. |
Plastic Flow Control Clamp | Fisher Scientific | 05-869 | Available from multiple vendors, sterility not required |
Glass rods, 5 mm diameter | delphiglass.com | 9198 | Exact size is personal preference, multiple vendors available |
PAP Hydrophobic Pen | Sigma-Aldrich | Z377821 | Available from multiple vendors. |
Sealing Film | Sigma-Aldrich | P7668 | Available from multiple vendors. |
15 mL Falcon tube | BD Falcon | 352096 | Available from multiple vendors. |
50 mL Falcon tube | BD Falcon | 352070 | Available from multiple vendors. |
HEPES; 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid | Sigma-Aldrich | H3375 | Available from multiple vendors. |
MES; 4-Morpholineethanesulfonic acid monohydrate | Sigma-Aldrich | 69892 | Available from multiple vendors. |
TAPS; N-[Tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid | Sigma-Aldrich | T5130 | Available from multiple vendors. |
10X/0.45 Air Objective | Zeiss | 000000-1063-139 | Comparable objectives can be substituted. 40X objectives can be used for single cell imaging. |
Dissecting Stereoscope | Zeiss | Discovery.V8 | Any dissecting stereoscope can be used. |
UAS-pHerry transgenic Drosophila melagnogaster | Available from Romero Lab | First published: Citation 10 | |
capaR-GAL4 driver line Drosophila melagnogaster | Available from Romero Lab | First published: Citation 32 | |
c724-GAL4 driver line Drosophila melagnogaster | Available from Romero Lab | First published: Citation 2 | |
Monochromatic High Sensitivity Digital Camera | Zeiss | Axiocam 506 mono | Exact brand and model can vary, can be replaced with any monochromatic high-sensitivity camera suited to live cellular imaging. |
GFP/FITC filter set, 470/40 nm ex., 515 nm longpass em., 500 nm dichroic | Chroma | CZ909 | Any GFP/FITC filer set can be substituted. |
RFP/TRITC filter set, 546/10 nm ex., 590 nm longpass em., 565 nm dichroic | Chroma | CZ915 | Any GFP/FITC filer set can be substituted. |
Inverted Epifluoescent Microscope | Zeiss | Axio Observer Z.1 | Any comparable microscope with motorized filter switching can be used. Upright microscopes can be used with open perfusion baths and water-immersion objectives. |
Statistical Analysis Software | Microcal | Origin 6.0 | Any software with comparable functionality can be substituted |
Image Analysis Software | National Institutes of Health | ImageJ 1.50i | Any software with comparable functionality can be substituted |
Image Acquisition Software | Zeiss | Zen 1.1.2.0 | Any software with comparable functionality can be substituted |
Single-edged Carbon Steel Razor Blade | Electron Microscopy Sciences | 71960 | Available from multiple vendors. |
Microscopy Slide Folder | Fisher Scientific | 16-04 | Available from multiple vendors. |
Bunsen Burner | Fisher Scientific | 50-110-1231 | Available from multiple vendors. |
Polystrene Drosophila Rearing Vials with Flugs | Genesee Scientific | 32-109BF | Comparable items can be substituted. |
2.5 L Laboratory Ice Bucket | Fisher Scientific | 07-210-129 | Available from multiple vendors. |
NMDG; N-Methyl-D-glucamine | Sigma-Aldrich | M2004 | Available from multiple vendors. |
200 uL barrier pipette tips | MidSci | AV200 | Available from multiple vendors. |
200 μL variable volume pipette | Gilson Incorporated | PIPETMAN P200 | Available from multiple vendors. |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved