Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - The University of Arizona
Demonstrating Author: Bradley Schmitz
Fungi are heterotrophic eukaryotic organisms, and with the exception of yeasts, are aerobic. They are abundant in surface soils and are important for their role in nutrient cycling and the decomposition of organic matter and organic contaminants. White rot fungi (phanerochaete chryosporium) for example, (Figure 1) are known to degrade aromatics.
Figure 1. White rot on birch.
Soils generally contain millions of fungi per gram, so the soil is typically diluted using a dilution series. A dilution series is made by suspending a given amount of soil in a dispersing solution, such as deionized water. The aliquots of the suspensions are then transferred to fresh solution, until the suspension is diluted sufficiently to allow individual discrete fungal colonies to grow on the agar plates. (Figure 2)
After inoculation on several replicate agar plates, the plates are incubated at 25 °C. After the macroscopic fungal colonies are formed, they are counted, as shown in Figure 3. Because the assumption is that one fungal colony is derived from one organism, the term Colony Forming Units (CFUs) is used in the final analysis, with the results expressed in terms of CFUs per gram of oven dry soil.
Normal culturable fungal counts from fertile soil are in the range of 106-106 fungal “propagules” (spores, hyphae, or hyphal fragments) per gram of dry soil. Culturable plate counts have been in use for enumerating organisms since the nineteenth century. They continue to be used today, as they are inexpensive to perform, require little labor, are quick, and are fairly reproducible. However, they do suffer from a number of errors, which must be considered when evaluating the results. The most significant of these errors is the fact that many organisms will not culture on media plates.
Figure 2. Dilution and plating technique. Here, the diluted soil suspension is incorporated directly in the agar medium rather than being surface applied as in the case of spread plating. From Environmental & Pollution Science, 2nd Ed., Academic Press, San Diego, CA
Figure 3. Soil fungi isolated from a surface soil grown in a Petri dish containing Rose Bengal Agar. Photo courtesy K.L. Josephson. From Environmental & Pollution Science, 2nd Ed., Academic Press, San Diego, CA.
1. Soil Sample Preparation
2. Fungus Inoculation and Incubation
3. Colony Counting and Examination by Microscopy
Figure 4. Fungal identification key.
Colony Counts
The number of fungal colonies per gram of soil is equal to the number of colonies counted on the plate multiplied by the reciprocal of the dilution plated. For example, if 46 colonies are counted at a dilution of 10-5, then the CFU per gram of soil is 46 x 105 or 4.6 x 106.
Identification of Three Different Fungal Genera
Fungi can be identified microscopically by examination of the fruiting bodies and spores. A fungi identification key can assist this process. (Figure 4) Common fungi types observed include Penicillium and Aspergillus.
Dilution and plating of soil fungi can be used as an indication of the health of a soil. Normally a “healthy” fertile soil will have 105 to 106 fungi per gram of soil. It can also be utilized to isolate pure cultures of specific fungi, subsequently evaluated for specific properties, such as the ability to degrade organic compounds. These can be detrimental as in the case of white rot fungi, or beneficial when toxic organics are degraded through biodegradation. Other uses of pure cultures of fungi include the isolation of fungi for antibiotics. For example, the first antibiotic ever was penicillin, produced by the soil-borne fungus Penicillium. This was first discovered by Sir. Alexander Fleming in 1929.
Skip to...
Videos from this collection:
Now Playing
Environmental Microbiology
57.3K Views
Environmental Microbiology
359.3K Views
Environmental Microbiology
126.4K Views
Environmental Microbiology
100.2K Views
Environmental Microbiology
42.2K Views
Environmental Microbiology
28.8K Views
Environmental Microbiology
44.5K Views
Environmental Microbiology
40.4K Views
Environmental Microbiology
47.8K Views
Environmental Microbiology
29.5K Views
Environmental Microbiology
39.3K Views
Environmental Microbiology
40.7K Views
Environmental Microbiology
184.3K Views
Environmental Microbiology
295.9K Views
Environmental Microbiology
13.8K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved