로그인

회전 관성

Overview

출처: 니콜라스 티몬스, 아산타 쿠레이, 박사, 물리학 및 천문학학과, 물리 과학 학교, 캘리포니아 대학, 어바인, 캘리포니아

관성은 가속되는 객체의 저항이다. 선형 운동학에서 이 개념은 개체의 질량과 직접 관련이 있습니다. 개체가 많을수록 해당 오브젝트를 가속화하려면 더 많은 힘이 필요합니다. 이것은 힘이 대량 시간 가속과 동일하다는 것을 명시하는 뉴턴의 두 번째 법칙에서 직접 볼 수 있습니다.

회전의 경우 회전 관성이라는 유사한 개념이 있습니다. 이 경우 회전 관성은 회전 가속되는 객체의 저항입니다. 회전 관성은 질량뿐만 아니라 회전 중심에서 질량의 거리에 의존한다.

이 실험의 목표는 두 개의 회전 질량의 회전 관성을 측정하고 회전 축으로부터 질량과 거리에 대한 의존성을 결정하는 것입니다.

Principles

특정 오브젝트 또는 오브젝트 시스템에는 회전 관성이 있습니다. 특정 축에 대한 회전 관성은 관성의 순간이라고 합니다. 질량에서 회전 축까지의 거리가 중요하기 때문에 단일 오브젝트는 회전하는 축에 따라 관성의 매우 다른 순간을 가질 수 있습니다. 개체에 대한 관성의 순간은 다음과 같이 정의됩니다.

Equation 1 , (방정식 1)

여기서 객체의 수입니다.

수학식 1에서 r은 회전 축에서 질량까지의 거리입니다. 방정식에서 볼 수 있듯이 관성의 순간은 질량에서 회전 축까지의 거리의 질량과 오브젝트의 질량에 따라 달라집니다.

선형 운동학이 모션 방정식을 가지고 있는 것처럼 회전 역학은 비슷한 움직임 방정식을 가지고 있습니다. 예를 들어 선형 모션에 대한 뉴턴의 두 번째 법칙은 다음과 같은 것입니다.

Equation 2. (방정식 2)

유사한 회전 방정식은 다음과 같은 형태를 취합니다.

Equation 3, (수학식 3)

토크는 어디에 Equation 4 Equation 5 관성의 순간이며 Equation 6 각도 가속입니다. 여기, 관성의 순간은 뉴턴의 두 번째 법칙에서 질량 용어의 아날로그입니다. 마찬가지로 관성의 순간은 회전 운동의 다른 중요한 방정식에 존재합니다.

Equation 7, (방정식 4)

Equation 8, (수학식 5)

Equation 9개체의 각도 속도는 어디에 있습니다.

이 실험의 경우 질량은 회전 축 주위의 스트링 감에 의해 회전 암에 연결됩니다. 실험 설정의 모양을 이미지보려면 그림 1을 참조하십시오. 두 개의 질량이 회전 팔에 연결되고, 마찰은 이 실험에서 무시되며, 관성의 총 순간은 회전질량의 순간과 회전하는 팔의 순간과 동일합니다.

중력의 영향으로 떨어지는 질량은 회전 팔에 토크를 제정합니다. 수학식 Equation 3 Equation 10 2및에서 . 여기서, Equation 11 문자열의 장력에서 나오는 Equation 12 Equation 13 오브젝트의 힘이며, 힘에서 회전 축까지의 거리입니다. 여기서, 그 거리는 상처 문자열의 가장자리에서 회전 축까지의 거리입니다.

각진 Equation 6 가속은 Equation 14 떨어지는 Equation 6 중량의 가속에 해당하는 상처 문자열의 점의 선형 가속이 있는 위치에 의해 정의됩니다. 모든 것을 함께 넣으면 Equation 16 . 뉴턴의 두 번째 법칙은 긴장을 찾는 데 사용됩니다. 오브젝트의 힘의 합은 가속도의 질량 시간과 같아야 합니다. 여기서, 떨어지는 무게에 힘은 중력 Equation 17 () 및 Equation 12 긴장, 그래서 Equation 18 . 일정한 가속을 Equation 19 Equation 20 가정하면, 무게가 이동하는 거리이며 Equation 21 그 거리를 떨어지는 데 걸리는 시간입니다. 이것은 운동의 운동 방정식에서 비롯됩니다.

모든 것을 종합하면 실험 중에 측정 할 수있는 수량 측면에서 관성의 순간에 대한 방정식이 발생합니다.

Equation 22. (방정식 7)

회전 축에서 동일한 거리에서 회전하는 암에 두 개의 질량이 부착되면 Equation 23 관성의 순간은 다음과 같습니다.

Equation 24, (방정식 8)

이 실험의 이론적 값입니다.

Figure 1
그림 1. 실험 용 설정.

Procedure

1. 긴 막대의 관성의 순간을 측정합니다.

  1. 무게가 회전 팔 근처에 될 때까지 무게에 부착 된 문자열을 감습니다.
  2. 무게를 떨어뜨리고 떨어뜨리는 데 걸리는 시간과 떨어지는 거리를 측정합니다.
  3. 단계 1.2를 세 번 수행하고 방정식 7을 사용하여 관성의 평균 모멘을 계산합니다.
  4. 다음 공식을 사용하여 회전 막대의 관성의 이론적 순간을 Equation 25 Equation 26 계산합니다: 막대의 Equation 27 질량이 어디에 길이입니다.
  5. 이론값을 측정된 값과 비교하고 차이를 기록합니다.

2. 막대에 부착 된 두 개의 질량.

  1. 100kg 질량 2개를 막대 중앙에서 20cm 떨어진 곳에 놓습니다.
  2. 연결된 질량과 함께 1.2 및 1.3 단계를 반복합니다.
  3. 관성의 총 순간은 부착 된 질량의 관성의 순간과 막대의 관성의 순간과 같아야합니다. 이 사실을 사용하여, 1단계 및 수학식 8의 결과를 사용하여 부착된 질량에 대한 관성의 이론적 및 실험적 순간을 결정한다.
  4. 이론값을 측정된 값과 비교하고 차이점을 기록합니다.

3. 관성의 순간에 거리의 효과.

  1. 실험실의 2단계를 반복하지만 부착된 질량을 회전 중심에서 10cm 떨어진 곳에 이동합니다. 무게의 떨어지는 또는 막대의 회전에 어떤 변화를 주의하십시오.
  2. 이론값을 측정된 값과 비교하고 차이점을 기록합니다.

4. 관성의 순간에 질량의 효과.

  1. 실험실의 2단계를 반복하지만 질량 크기를 200kg으로 변경합니다.
  2. 이론값을 측정된 값과 비교하고 차이점을 기록합니다.
Results
이론적 가치

(kg m2)

실험적 가치

(kg m2)

다름

(%)

1부 0.20 0.22 10
2부 0.08 0.07 14
3부 0.02 0.02 0
4부 0.16 0.15 6

실험의 결과는 방정식 7과 8에의해 만들어진 예측을 확인합니다. 1.4단계의 수식에 의해 주어진 바와 같이 회전 막대에 대한 관성의 순간은 실험적으로 확인되었다. 3단계의 거리가 감소하여 예측된 바와 같이 관성의 순간이 더 작아졌다. 4단계에서 질량이 클수록 방정식 8이예측한 바와 같이 관성의 순간이 더 커졌다.

Application and Summary

왜 줄타기 워커가 매우 긴 기둥을 운반하는지 궁금해한 적이 있습니까? 그 이유는 긴 극의 길이로 인해 관성의 매우 큰 순간을 가지고 있기 때문이다. 따라서 회전하려면 많은 양의 토크가 필요합니다. 이것은 기둥이 안정적으로 유지되기 때문에 줄다리기 워커가 균형을 유지하는 데 도움이됩니다.

자동차와 자전거의 바퀴는 결코 단단한 디스크가 되지 않습니다. 대신, 그들은 축에서 바퀴를 지원하는 스포크가 있습니다. 이것은 속도보조가 되는 가벼운 설계를 가능하게 하지만, 이 디자인의 진짜 이유는 회전 관성을 설명할 수 있다. 솔리드 디스크는 후프 모양보다 관성의 더 큰 순간을 가지고 있습니다. 관성의 작은 순간으로, 후프는 회전하는 적은 토크가 필요하며, 아마도 더 중요한 것은 회전을 멈추기 위해 토크가 덜 필요합니다.

야구 선수가 패스트볼을 던지는 투수를 상대로 방망이를 맞을 때, 그는 안타를 치기 위해 스윙 속도를 높이고 싶을 것입니다. 그는 단순히 "질식"이라고 불리는 박쥐의 무거운 끝에 손을 더 가깝게 움직여 이를 달성할 수 있습니다. 이렇게 하면 박쥐 의 질량 중심에서 회전 축까지의 거리가 줄어들므로 타자가 방망이를 쉽게 회전할 수 있습니다.

이 실험에서는 막대와 두 질량에 대한 관성의 순간을 실험적으로 측정하고 이론적으로 계산하였다. 이러한 값 간의 차이점을 조사했습니다. 질량이 관성 순간에 미치는 영향뿐만 아니라 회전 축으로부터의 거리의 효과를 테스트했습니다.

Tags
Rotational InertiaTorqueRotational AccelerationInertiaMassLinear KinematicsForceRotational KinematicsCenter Of RotationDistanceFormulaRotating ObjectSystemExperimental Set upLawsEquationsAxleAxis Of RotationWeightString

건너뛰기...

0:03

Overview

1:24

Principles Behind the Rotational Inertia Experiment

3:29

Moment of Inertia of a Rod

4:03

Moment of Inertia with Masses Attached to the Rod

5:34

Calculation and Results

6:35

Applications

7:27

Summary

이 컬렉션의 비디오:

article

Now Playing

회전 관성

Physics I

43.5K Views

article

뉴턴의 운동 법칙

Physics I

75.7K Views

article

힘과 가속

Physics I

79.1K Views

article

여러 방향의 벡터

Physics I

182.3K Views

article

운동학 및 발사체 운동

Physics I

72.6K Views

article

뉴턴의 만유 인력 법칙

Physics I

190.8K Views

article

모멘텀 보존

Physics I

43.3K Views

article

마찰

Physics I

52.9K Views

article

후크의 법칙과 단순 조화 운동

Physics I

61.3K Views

article

평형 및 자유 물체 다이어그램

Physics I

37.3K Views

article

토크

Physics I

24.3K Views

article

각운동량

Physics I

36.2K Views

article

에너지와 일

Physics I

49.7K Views

article

엔탈피

Physics I

60.4K Views

article

엔트로피

Physics I

17.6K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유