Method Article
Bu makale, β hücreli benzeri hücrelerin yönlendirilmiş farklılaşması ve fonksiyonel analizi için bir protokol sunmaktadır. İnsülin üreten pankreas hücreleri oluşturmadan önce insan pluripotent kök hücreleri için optimal kültür koşullarını ve pasajlarını tanımladık. Altı aşamalı farklılaşma, kesin endoderm oluşumundan, glikoza yanıt olarak insülin salgılayan fonksiyonel β hücreli hücrelere doğru ilerler.
İnsan pluripotent kök hücreleri (hPSC'ler) her tür hücreye farklılaşabilir ve bu da onları insan pankreas β hücrelerinin mükemmel bir alternatif kaynağı haline getirir. hPSC'ler, blastosistten türetilen embriyonik kök hücreler (hESC'ler) veya bir yeniden programlama işlemi kullanılarak doğrudan somatik hücrelerden üretilen indüklenmiş pluripotent hücreler (hiPSC'ler) olabilir. Burada, farklılaşmadan ve daha sonra insülin üreten pankreas hücrelerinin oluşturulmasından önce hPSC'ler için optimal kültür ve geçiş koşullarını ana hatlarıyla belirtmek için video tabanlı bir protokol sunulmaktadır. Bu metodoloji, hPSC'lerin kesin endoderm (DE), ilkel bağırsak tüpü, posterior ön bağırsak kaderi, pankreas progenitörleri, pankreas endokrin progenitörleri ve nihayetinde pankreas β hücrelerine farklılaştığı β hücreye yönelik farklılaşma için altı aşamalı süreci takip eder. Bu farklılaşma metodolojisinin insan pankreas β hücrelerini oluşturmak için 27 günlük bir süre alması dikkat çekicidir. İnsülin sekresyonunun potansiyeli, immün boyama ve glukoz ile uyarılmış insülin sekresyonunu içeren iki deneyle değerlendirildi.
İnsan pluripotent kök hücreleri (hPSC'ler), çeşitli hücre tiplerine farklılaşma konusunda benzersiz bir yeteneğe sahiptir ve bu da onları insan pankreas β hücrelerine uygun bir alternatif haline getirir1. Bu hPSC'ler iki tipe ayrılır: blastosist2'den türetilen embriyonik kök hücreler (hESC'ler) ve somatik hücrelerin doğrudan yeniden programlanmasıyla üretilen indüklenmiş pluripotent hücreler (hiPSC'ler)3. hPSC'leri β hücrelere ayırma tekniklerinin geliştirilmesi, hem temel araştırmalar hem de klinik uygulamalar için önemli etkilere sahiptir 1,4. Diabetes mellitus, dünya çapında >400 milyon insanı etkileyen kronik bir hastalıktır ve vücudun pankreas β hücrelerinin bozulması veya kaybı nedeniyle glisemiyi düzenleyememesinden kaynaklanır5. Transplantasyon için pankreas adacık hücrelerinin sınırlı mevcudiyeti, diyabetiçin hücre replasman tedavilerinin geliştirilmesini engellemiştir 2,4,6,7. hPSC'leri kullanarak glikoza duyarlı insülin salgılayan hücreler üretme yeteneği, insan adacık gelişimini ve işlevini incelemek için yararlı bir hücresel model görevi görür. Kontrollü bir ortamda diyabet tedavisi için potansiyel terapötik adayları test etmek için de kullanılabilir. Ayrıca, hPSC'ler, hastayla genetik olarak özdeş olan pankreas adacık hücreleri üretme potansiyeline sahiptir ve transplantasyondan sonra immün reddi riskini azaltır 2,4,7.
Son yıllarda, hPSC kültürünün ve farklılaşma protokollerinin iyileştirilmesinde önemli ilerlemeler olmuştur, bu da pankreas β hücreleri üretmeye yönelik farklılaşma sürecinin verimliliğinin ve tekrarlanabilirliğinin artmasına neden olmuştur 8,9.
Aşağıdaki protokol, pankreas β hücrelerinin yönlendirilmiş farklılaşmasının temel aşamalarını özetlemektedir. Farklı zaman noktalarında spesifik hücre sinyal yollarının düzenlenmesini içerir. Sui L. ve ark.10 (2018) tarafından hPSC'lerin pankreas β hücrelerine dönüştürülmesi için geliştirilen protokole dayanmaktadır. En son araştırmalar, β hücrelerinin farklılaşmasını artırmak için aphidicolin (APH) tedavisinin kullanılmasının önemini vurguladığından, protokol Sui L. ve ark.11'in (2021) son güncellemelerine göre ayarlandı. Mevcut protokol, sürecin sonraki aşamalarında ortama APH eklenmesini içerir. Ayrıca, ilk protokole kıyasla farklılaşmanın erken aşamalarında ortamın bileşiminde değişiklikler yapılmıştır. Dikkate değer bir değişiklik, 6. günde Keratinosit Büyüme Faktörü (KGF) eklenmesi ve 8. güne kadar devam etmesidir. Keratinosit büyüme faktörü (KGF), 6. günden 8. güne kadar verilir ve bu, KGF'nin evre 4 ortamına dahil edilmediği ilk protokol10'dan biraz farklıdır.
β hücreli hücrelerin oluşumundaki ilk ve temel adım, hPSC'lerin, pankreas da dahil olmak üzere çeşitli organların epitel astarına yol açan ilkel bir germ tabakası olan kesin endoderm'e (DE) yönlendirilmiş farklılaşmasıdır. DE oluşumundan sonra, hücreler ilkel bağırsak tüpüne farklılaşır ve bunu posterior ön bağırsak kaderinin belirlenmesi izler. Posterior ön bağırsak daha sonra endokrin ve ekzokrin hücreler de dahil olmak üzere pankreasın tüm hücre tiplerine farklılaşma potansiyeline sahip pankreas progenitör hücrelerine dönüşür. Süreçteki bir sonraki aşama, Langerhans adacıklarında bulunan hormon salgılayan hücrelere yol açan pankreas endokrin progenitörlerini içerir. Sonunda, farklılaşma süreci, tamamen işlevsel pankreas β hücresi benzeri hücrelerüreterek son aşamasına ulaşır 9,10. Bu işlemin karmaşık olduğunu ve farklılaşmanın etkinliğini ve özgüllüğünü artırmak için spesifik büyüme faktörleri ve hücre dışı matris bileşenleri gibi kültür koşullarının optimizasyonunu gerektirdiğinibelirtmek önemlidir 9,10. Ayrıca, in vitro olarak hPSC'lerden fonksiyonel β hücre benzeri hücreler üretmek hala büyük bir zorluktur. Devam eden araştırmalar, farklılaşma protokollerini geliştirmeye ve ortaya çıkan β hücrelerinin olgunlaşmasını ve işlevini geliştirmeye odaklanmaktadır9.
Bu protokolde, hPSC'lerin kültürü ve geçişi sırasında nazik hücre ayrışmasının kullanılması, hücre canlılığını ve pluripotentliği korumak için esastır ve pankreas β hücrelerine farklılaşma etkinliğini önemli ölçüde artırır. Ek olarak, her aşamaya özgü ortam, insan adacığına çok benzeyen kümelerde yüksek miktarda insülin salgılayan hücre verimini teşvik etmek için Sui L. ve ark.10 tarafından geliştirilen protokol izlenerek titizlikle optimize edilmiştir.
Farklılaşmaya başlamadan önce, deneysel amaçlar için gerekli sayıda adacık benzeri organoidin belirlenmesi önerilir. 6 oyuklu bir plakada, %80'in üzerinde birleşmeye sahip tek bir kuyu tipik olarak 2-2,3 milyon hPSC'den oluşur. hPSC hatlarındaki farklılıklar ve farklılaşma verimliliği nedeniyle doğru bir tahmin zor olsa da, kaba bir tahmin, ilk kuyu sayısının 1,5 katıdır. Etkili bir şekilde yönlendirilmiş bir farklılaşma, genellikle altı oyuklu plakalarda oyuk başına 1.6 ila 2 milyon hücre verir ve yalnızca insülin üreten hücrelerden ziyade kümeler içindeki tüm hücreleri kapsar. 50 μm'lik bir küme için, yaklaşık 10.000 hücre içerecek şekilde tahmin edilebilir. Tablo 1 , glikoz ile uyarılan insülin sekresyon tamponu ile birlikte, kök hücre matrisi ve ortamının üzerinde yönlendirilmiş farklılaşmanın her günü/aşaması için kullanılan ortam bileşiminin bir özetini sağlar.
1. İnsan pluripotent kök hücrelerinin 6 oyuklu plakalarda farklılaşmadan önce geçirilmesi
NOT: İnsan kök hücrelerinin β hücre benzeri hücrelere farklılaşmadan önce uygun şekilde geçirilmesi, deneysel sürecin oluşturulmasında çok önemli bir adımdır. Yanlış geçiş seyreltmesi veya bağlantı hücre numarası, farklılaşma verimliliğini ve aslına uygunluğu tehlikeye atabilir.
2. İnsan kök hücresi kaynaklı β hücrelerine yönelik farklılaşma
NOT: hPSC'ler,% 80-95 birleşme sağlandığında pankreas β hücrelerine doğrudan farklılaşma işlemi için kullanılabilir.
3. Pankreas β hücreli kümelerin boyanması
NOT: Farklılaşma sonrası kümelerin işlevsel değerlendirmesini incelemek için bu adımı gerçekleştirin
4. GSIS (glukoz ile uyarılmış insülin sekresyonu testi)
Bu yazıda açıklanan protokol, β benzeri hücreleri hPSC'lerden10 ayırt etmek için oldukça verimli bir yaklaşım sunar. Bu süreç, kolayca ölçeklendirilebilen bir 2D kültür sistemi kullanır ve farklılaşmayı öğrenme, daha küçük projeler ve laboratuvarlar ve bir iPSC hattının farklılaşma potansiyelini değerlendirmek için pilot testler gibi çeşitli deneysel ortamlarda kullanılmasını sağlar.
Glikoz homeostazı hakkında fikir edinmek için adacıklardaki farklılaşmış β hücrelerinin fonksiyonel özelliklerini karakterize etmek esastır. Bu tipik olarak, β hücre belirteçleri ve insülin ekspresyonu için immün boyama gibi çeşitli deneylerin yanı sıra, düşük ve yüksek glikoz konsantrasyonlarına yanıt olarak adacık işlevini test eden glikoz ile uyarılmış insülin sekresyonu (GSIS) testleri yoluyla elde edilir 12,13. β hücreleri, β hücre kimliğini oluşturmak ve sürdürmek için kritik olan Nkx2-2, Pdx1, Nkx6-1 ve Neurod1 dahil olmak üzere imza genlerine sahiptir9. İmmün boyama teknikleri, doku kesitleri içinde protein ekspresyonunu ve lokalizasyonunu araştırmak için değerlidir. β hücreli belirteçler için immün boyama, temel pankreas soy belirteçlerinin ekspresyon seviyelerini değerlendirebilir ve farklılaşma sürecinin aslına uygunluğu ve belirli uygulamalar için optimizasyonu hakkında içgörüler sağlayabilir 9,12.
Bu çalışmada, insan doğal adacıklarında bulunanlara benzeyen β hücreleri de dahil olmak üzere farklı hücre tiplerini içeren kümeleri ayırt etmek için Mel1 InsGFP/w (Mel1 INS-GFP)14 hESC raportör hattı kullanıldı. Bu belgedeki Şekil 2 , farklılaşma sürecinin verimliliği ve doğruluğu ile ilgili önemli bulgular sunmaktadır. Sonuçlar, pankreas soyu içinde insülin eksprese eden hücrelerin yüksek oranda zenginleştiğini ve bu hücrelerin glikoz ile uyarılan insülin sekresyonu sergilediğini göstermektedir. Bu, farklılaşma süreci boyunca fonksiyonel β benzeri hücrelerin başarılı bir şekilde üretildiğini gösterir.
Farklılaşmış hücreler düşük ve yüksek glikoz konsantrasyonları ile uyarıldı ve GSIS sonuçları, Mel1 hücrelerinden türetilen kümelerin, glikoza insülin sekresyonu yanıtlarında adacıklara benzer şekilde işlev gördüğünü gösterdi. Mel1'den türetilen kümelerin, düşük glikoz konsantrasyonlarına kıyasla yüksek glikoz konsantrasyonlarına yanıt olarak 100 kat daha fazla insülin salgıladığı bulundu. Spesifik olarak, insülin içeriği 3.3 mM düşük glikozda %0.003 ± %0.002 ve 16.7 mM yüksek glikozda %0.236 ± %0.197 idi.
Mel1 INS-GFP hESC'lerden türetilen kümeler, GSIS testine ek olarak bileşimlerini ve işlevselliklerini belirlemek için daha fazla analize tabi tutuldu. Spesifik olarak, β hücreli imza genlerinin ekspresyonu ve kümeler içinde farklı hücre tiplerinin varlığı araştırıldı. Sonuçlar, bu işlemden elde edilen pankreas soyunun insülin pozitif hücrelerde yüksek oranda zenginleştirildiğini gösterdi, bu da hESC'lerin β hücre benzeri hücrelere farklılaşma sürecinde yüksek düzeyde başarı olduğunu gösterdi. Ayrıca, β hücreli kimliklerin kurulması ve sürdürülmesi için önemli olan Nkx6.1 ve Pdx1 gibi imza genlerinin ekspresyonu incelenmiştir. Analiz, hücrelerin yaklaşık% 25 ve% 40'ının sırasıyla Nkx6.1 ve Pdx1'i eksprese ettiğini ortaya koydu ve kümelerin farklılaşmış β benzeri hücreler içerdiğine dair ek kanıtlar sağladı (küme başına ortalama Nkx6.1+ hücreleri% 24.9 ±% 6.2, n = 9 küme, Pdx1+ hücreleri% 40.2 ±% 6.2, n = 9, SEM, Şekil 2). Ek olarak, kümeler, toplam hücre popülasyonunun yaklaşık% 15'ini oluşturan glukagon pozitif hücreler gibi diğer hücre tiplerini içeriyordu. Bu hücreler tipik olarak Langerhans'ın doğal adacıklarının alfa hücrelerinde bulunur, bu da kümelerin hücre bileşimi açısından insan adacıklarına çok benzediğini düşündürür.
Şekil 1: hPSC'lerin pankreas β hücrelerine doğru farklılaşması. (A) Şematik gösterimi in vitro hPSC'lerin pankreas β hücrelerine yönlendirilmiş farklılaşması, altı ardışık aşamayı içerir: kesin endoderm indüksiyonu, ilkel bağırsak tüpü oluşumu, posterior ön bağırsak kader spesifikasyonu, pankreas progenitör üretimi, pankreas endokrin progenitör oluşumu ve nihayetinde pankreas β hücre farklılaşması. Pankreas β hücre farklılaşması, belirli zamanlarda belirli hücre sinyal yollarının düzenlenmesi ile insan adacık gelişiminin temel aşamalarını kullanır. B27: B-27 Eki; Ri: rho ile ilişkili protein kinaz inhibitörü veya ROCK inhibitörü; T3: tiroid hormonu; KGF: insan KGF / FGF-7 proteini; RepSox: Aktivin / Nodal / TGF-β yolu inhibitörü; ALK5'i inhibe eder; RA: Retinoik asit; ZS: çinko sülfat; UFH: fraksiyone edilmemiş heparin; XX: gama-Sekretaz İnhibitörü XX; APH: afidikolin; EGF: epidermal büyüme faktörü; LDN: BMP İnhibitörü III, LDN-212854; Siklo: Siklopamin- KAAD. (B) Pluripotent kök hücrelerden pankreas β hücrelerine farklılaşmanın çeşitli aşamalarında yakalanan hücresel morfoloji görüntüleri. İlk görüntü, farklılaşmanın ilk gününde insan pluripotent kök hücrelerini göstermektedir (HPSC'lerin tek tabakası). (C) 11. günde, hücreler pankreas progenitör aşamasındadır. 100 μm'lik ölçek çubuğu. (D) 12. günde, pankreas progenitör aşamasında hücrelerin ayrışmasından sonra 6 oyuklu plakanın mikro kuyularında kümeler oluşur. (E) 13. günde, kümeler düşük bağlantılı 6 oyuklu bir plakadadır. 100 μm'lik ölçek çubuğu. Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.
Şekil 2: Farklılaşmış Mel1 InsGFP/w hESC raportör hattı14'ten elde edilen kümeler, β hücre olgunluk belirteçlerini eksprese eden insülin üreten hücrelerin varlığı açısından değerlendirildi. (A) Kümelerin immünofloresan görüntüleri, glukagon üreten hücrelere (yaklaşık% 15) kıyasla insülin üreten hücrelerin (yaklaşık% 60) baskınlığını ortaya çıkaran dönen disk konfokal mikroskobu kullanılarak kriyokalıp kesitlerinden (5 μm) yakalandı (n = 9 küme, yaklaşık 18.000 hücre, SEM). (B) Kümelerin immünofloresan görüntüleri, pankreas β hücresi belirteçleri Nkx6.1'i birlikte eksprese eden insülin üreten hücrelerin baskınlığını gösteren dönen disk konfokal mikroskobu kullanılarak kriyokalıp kesitlerinden (5 μm) elde edildi (n = 9 küme, yaklaşık 18.000 hücre). (C) İnsülin pozitif, glukagon pozitif ve β hücreli belirteçler Nkx6.1 pozitif hücrelerin ve β hücreli belirteçler Pdx1 pozitif hücrelerin yüzdesini belirlemek için belirteçlerin immün boyanması için özel olarak tasarlanmış ImageJ hücre sayacı makrosu kullanıldı. (D) Farklılaşmış kümelerde (n=9, SEM) yüksek glikoz stimülasyonuna (16.7mM glikoz) yanıt olarak 100 kat artış gösteren Mel1 InsGFP/w hESC türevi kümelerin glikoz ile uyarılan insülin sekresyonu değerlendirildi. Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.
Tablo 1: Yönlendirilmiş farklılaşma için medya kompozisyonunun özeti. Bu tablo, glikoz ile uyarılan insülin sekresyon tamponu ile birlikte kök hücre matrisi ve ortamının üzerinde yönlendirilmiş farklılaşmanın her günü/aşaması için kullanılan ortam bileşiminin bir özetini sağlar. Bu Tabloyu indirmek için lütfen buraya tıklayın.
hPSC'lerin pankreas β hücrelerine başarılı bir şekilde farklılaşması, rutin kültürlemenin ve seçilen hPSC'lerin geçişinin tüm yönlerinin optimize edilmesine bağlıdır. Bu, hücre hattının normal bir karyotipe sahip olmasını, mikoplazma enfeksiyonu için negatif olmasını ve plazmit veya viral vektör genomlarından arınmış olmasını sağlamayı içerir. Ayrıca, hiPSC'leri kullanırken, pilot deneyler için hala yeniden programlanmakta olan en eski pasajı kullanmaktan kaçınmak önemlidir. Bu deneyler, en iyi farklılaşma potansiyeline ve optimum geçiş sayısına sahip hPSC hattını belirlemek için küçük ölçekte yapılmalıdır.
Farklılaşma verimliliğini etkileyebilecek diğer parametreler arasında kullanılan kök hücre ortamının kalitesi, kaplama yoğunluğu ve geçiş sayısı10,12 yer alır. Bu protokol, ilgili tüm parametrelerin optimize edilmesini sağlayarak farklılaşma verimliliğini en üst düzeye çıkarmak için optimize edilmiştir10.
hPSC'lerin β hücrelere farklılaşmasını desteklemek için her aşamada spesifik formülasyonlara sahip farklılaşma ortamı kullanılır. Aktivin A ve bir Wnt agonisti, kesin endoderm hücrelerine geçişi başlatmak için farklılaşma ortamında kullanılır. İlkel bağırsak tüpü aşamasında, β hücrelere15 daha fazla farklılaşmayı teşvik etmek için ortama KGF eklenir ve KGF'nin bu dahil edilmesi, Sui, Egli ve ark.10'un orijinal protokolünden farklı olarak 6. günden 8. güne kadar korunur. Pankreas progenitör aşamasında, spesifik ortam bileşimi, Pdx1 transkripsiyon faktörünün ekspresyonunu arttırmak için optimize edilir. Bu, kemik morfogenetik protein (BMP) yolu8'i inhibe eden yüksek konsantrasyonda retinoik asit (RA), KGF ve LDN193189 kullanılarak elde edilir. Farklılaşma endokrin aşamasına ilerledikçe, kültür ortamı Notch sinyalini aşağı regüle edecek şekilde değiştirilir. Bu, bir γ-sekretaz inhibitörü olan XXI'nin yanı sıra T3 (tiroid hormonu), RA ve Aktivin / BMP / TGF-β yolu8'in bir inhibitörü olan RepSox'un dahil edilmesiyle elde edilir. Bu spesifik bileşik kombinasyonu, pankreas progenitörlerinin endokrin progenitörlere farklılaşmasını teşvik etmek için kullanılır. Son olarak, doğrudan farklılaşma sürecini optimize etmek için, pankreas progenitörlerinden endokrin progenitörlere farklılaşma sırasında afidikolin (APH) eklenir. APH'nin bu ilavesi, β hücre farklılaşmasını daha da geliştirmeyi amaçlamaktadır ve Sui, Egli ve ark.10,11 tarafından önerilen ilk protokolden farklı bir modifikasyonu temsil etmektedir.
Farklılaşma işlemi sırasında, hücre yoğunluğunu izlemek ve aşırı birleşmeyi önlemek çok önemlidir, çünkü bu, uygun farklılaşmayı engelleyebilir. Yüksek yoğunluklu kültürler, kesin endoderme farklılaşmayı inhibe ederek yüksek Oct4 ekspresyonunu koruyabilir. İlk yıkama adımında ROCK inhibitörünün çıkarılması, farklılaşmayı başlatmak ve hPSC'lerin pluripotent durumunun değiştirilmesine izin vermek için gereklidir. İnsülin lokusuna entegre edilmiş bir GFP'ye sahip Mel1 INS-GFP gibi bir floresan markörü kullanmak, pankreas progenitörü ve β hücre aşamalarındaki farklılaşma ilerlemesinin değerlendirilmesini kolaylaştırır ve aşağı akış deneylerine yardımcı olur14.
İnsan pluripotent kök hücrelerini pankreas β benzeri hücrelere ayırmak için mevcut protokol, farklı hPSC hatları arasında verimlilikte değişkenlik göstermiştir10. Ek olarak, ortaya çıkan β benzeri hücreler, insan pankreas adacıklarına kıyasla fonksiyonel olgunlaşmamışlık sergiler ve hücre başına daha düşük insülin sekresyonu gösterir. Bu sınırlamayı daha da ileri götürmek için, β benzeri hücrelerin in vivo olgunlaşması, farklılaşmanın son aşamalarında adacık organoidlerinin hayvan modellerine nakledilmesiylesağlanabilir 6,7.
Bu sınırlamalara rağmen, hPSC'lerin pankreas β hücrelerine farklılaşması, mevcut yöntemlere göre önemli bir potansiyele sahiptir 8,9,10. Bu teknik, glikoza yanıt veren ve β hücreli belirteçleri eksprese eden çok sayıda β hücre benzeri hücre üretmeye izin verir (Pdx1 ve Nkx6.1, bkz. Şekil 2). Bu, insan pankreas adacıklarının kullanımıyla ilgili etik, teknik ve kaynak sınırlamaları olmadan yapılır. Ek olarak, bu teknik, ilaç testi ve hastalık modellemesi için hastaya özgü β hücreler üretilebildiğinden, kişiselleştirilmiş tıbba uygulanma potansiyeline sahiptir 4,6,7. Teknik ayrıca, pankreas β hücrelerinin kaybını veya işlev bozukluğunu içeren diyabet tedavisinde gelecekteki uygulamalara da sahip olabilir 4,6,7.
Ines Cherkaoui, Araştırmacı Ödülü için Wellcome Trust'a (212625/Z/18/Z), Program hibesi için UKRI MRC'ye (MR/R022259/1), Proje hibesi için Diabetes UK'ye (BDA16/0005485), başlangıç fonları için CRCHUM'a, John R. Evans Lider Ödülü için Innovation Canada'ya (CFI 42649) teşekkür eden GAR'a Diabetes UK öğrenciliği (BDA 18/0005934) tarafından desteklendi. Proje hibesi için NIH-NIDDK (R01DK135268) ve ekip hibesi için CIHR, JDRF (CIHR-IRSC:0682002550; JDRF 4-SRA-2023-1182-SN). Camille Dion ve Dr Harry Leitch, insan hiPSC'lerinin üretimi ve kültürüne yardımları için, NIHR Imperial BRC (Biyomedikal Araştırma Merkezi) Organoid tesisi, Londra.
Name | Company | Catalog Number | Comments |
1.5 mL TubeOne Microcentrifuge Tube | Starlabs | S1615-5500 | |
6-well Cell culture plate | ThermoFisher Scientific | 165218 | |
AggreWell 400 6-well plate | STEMCELL Technologies | 34425 | |
Anti-Glucagon | Sigma-aldrich | G2654-100UL | |
Anti-Insulin | Dako | A0564 | |
Anti-NKX6.1 | Novus Biologicals | NBP1-49672SS | |
Anti-PDX1 | Abcam | ab84987 | |
Aphidicolin | Sigma-Aldrich | A4487 | |
B-27 Supplement (50X), serum free | Thermo Fisher Scientific | 17504044 | |
Bovine Serum Albumin, fatty acid free | Sigma-Aldrich | A3803-100G | |
Calcium chloride dihydrate | Sigma-Aldrich | C3306 | |
Calcium/Magnesium free D-PBS | Thermo Fisher Scientific | 14190144 | |
Cyclopamine-KAAD | Calbiochem | 239804 | |
D-(+)-Glucose,BioXtra | Sigma-Aldrich | G7528 | |
Disodium hydrogen phosphate, anhydrous | Sigma-Aldrich | 94046-100ML- | |
DMEM plus GlutaMAX | Thermo Fisher Scientific | 10566016 | For Washing Medium 2: DMEM plus GlutaMAX 1% PS. |
DMEM/F-12 (Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12) | Thermo Fisher Scientific | 10565-018 | |
Epredi SuperFrost Plus Adhesion slides | Thermo Fisher Scientific | 10149870 | |
Ethanol | VWR | 20821.33 | |
Fetal Bovine Serum | Thermo Fisher Scientific | 10270098 | |
Gamma-Secretase Inhibitor XX | Thermo Fisher Scientific | J64904 | |
Geltrex LDEV-Free Reduced Growth Factor Basement | Thermo Fisher Scientific | A1413302 | Geltrex 1:1 into cold DMEM/F-12 medium to provide a final dilution of 1:100. |
Goat Anti-Guinea pig, Alexa Fluor 555 | Thermo Fisher Scientific | A-21435 | |
Goat Anti-Guinea pig, Alexa Fluor 647 | Abcam | ab150187 | |
Goat anti-Mouse Secondary Antibody, Alexa Fluor 633 | Thermo Fisher Scientific | A-21052 | |
Goat anti-Rabbit IgG Secondary Antibody, Alexa Fluor 568 | Thermo Fisher Scientific | A-11011 | |
Heparin | Sigma-Aldrich | H3149 | |
HEPES buffer | Sigma-Aldrich | H3375-500G | |
Hoechst 33342, Trihydrochloride | Thermo Fisher Scientific | H1399 | |
Human FGF-7 (KGF) Recombinant Protein | Thermo Fisher Scientific | PHG0094 | |
Hydrogen chloride | Sigma-Aldrich | 295426 | |
ImmEdge Hydrophobic Barrier PAP Pen | Agar Scientific | AGG4582 | |
LDN193189 | Sigma-Aldrich | SML0559-5MG | |
Magnesium chloride hexahydrate | Sigma-Aldrich | M9272-500G | |
OCT Compound 118 mL | Agar Scientific | AGR1180 | |
PBS Tablets, Phosphate Buffered Saline, Fisher BioReagents | Thermo Fisher Scientific | 7647-14-5 | |
Penicillin-Streptomycin (PS) | Thermo Fisher Scientific, | 15070-063 | |
Potassium chloride | Sigma-Aldrich | 7447-40-7 | |
Recombinant Human EGF Protein | R&D Systems | 236-EG-200 | |
Rectangular cover glasses, 22×50 mm | VWR | 631-0137 | |
RepSox (Hydrochloride) | STEMCELL Technologies | 72394 | |
RPMI 1640 Medium, GlutaMAX Supplement | Thermo Fisher Scientific | 61870036 | For Washing Medium 1: RPMI 1640 plus GlutaMAX 1% PS. |
Shandon Immu-mount | Thermo Fisher Scientific | 9990402 | |
Sodium bicarbonate | Sigma-Aldrich | S6014-500G | |
Sodium chloride | Sigma-Aldrich | S3014 | |
Sodium dihydrogen phosphate anhydrous | Sigma-Aldrich | 7558-80-7 | |
STEMdiff Endoderm | STEMCELL Technologies | 5110 | |
StemFlex Medium | Thermo Fisher Scientific | A3349401 | Thaw the StemFlex Supplement overnight at 4°C, transfer any residual liquid of the supplement bottle to StemFlex Basal Medium. |
Stemolecule All-Trans Retinoic Acid | Reprocell | 04-0021 | |
Thyroid Tormone 3 (T3) | Sigma-Aldrich | T6397 | |
Trypan Blue Solution, 0.4% | ThermoFisher Scientific | 15250061 | |
TrypL Express Enzyme (1X) | Thermo Fisher Scientific | 12604013 | |
TWEEN 20 | Sigma-Aldrich | P2287-500ML | |
Ultra-Low Adherent Plate for Suspension Culture | Thermo Fisher Scientific | 38071 | |
UltraPure DNase/RNase-Free Distilled Water | Thermo Fisher Scientific | 10977015 | |
Y-27632 (Dihydrochloride) | STEMCELL Technologies | 72302 | |
Zinc Sulfate | Sigma-Aldrich | Z4750 |
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır