Method Article
Aqui nós apresentamos um método experimental para testar o papel de plasmídeos multicópia na evolução da resistência aos antibióticos.
Multicópia plasmídeos são extremamente abundantes em procariontes, mas seu papel na evolução bacteriana continua a ser mal compreendido. Recentemente mostramos que o aumento no número de cópia do gene por célula fornecido por plasmídeos multicópia poderia acelerar a evolução dos genes codificados do plasmídeo. Neste trabalho, apresentamos um sistema experimental para testar a capacidade de plasmídeos multicópia para promover a evolução do gene. Utilizando métodos simples de biologia molecular, construímos um sistema de modelo onde um gene de resistência a antibióticos pode ser inserido em MG1655 de Escherichia coli , o cromossomo ou em um plasmídeo multicópia. Nós usamos uma abordagem de evolução experimental para propagar as diferentes estirpes sob concentrações crescentes de antibióticos e medimos a sobrevivência das populações bacterianas ao longo do tempo. A escolha da molécula do antibiótica e o gene de resistência é para que o gene só pode conferir resistência através da aquisição de mutações. Esta abordagem de "resgate evolutivo" fornece um método simples para testar o potencial de plasmídeos multicópia para promover a aquisição de resistência aos antibióticos. Na próxima etapa do sistema experimental, caracterizam-se as bases moleculares da resistência aos antibióticos. Para identificar as mutações responsável pela aquisição da resistência aos antibióticos, nós usamos a profundo sequenciamento de DNA das amostras obtidas a partir de clones e populações inteiras. Finalmente, para confirmar o papel das mutações no gene em estudo, podemos reconstruí-los em segundo plano parental e teste o fenótipo de resistência das cepas resultantes.
Resistência aos antibióticos em bactérias é um problema de saúde1. Em um nível fundamental, a propagação da resistência aos antibióticos em bactérias patogênicas é um exemplo simples da evolução por seleção natural2,3. Simplificando, o uso de antibióticos gera a seleção de cepas resistentes. Dos principais problemas em biologia evolutiva, portanto, é compreender os fatores que influenciam a capacidade das populações bacterianas de desenvolver resistência aos antibióticos. Experimentos de seleção surgiram como uma ferramenta muito poderosa para investigar a biologia evolutiva das bactérias, e este campo produziu incríveis insights sobre uma vasta gama de problemas evolutivos4,5,6. Na evolução experimental, populações bacterianas, iniciadas a partir de uma única estirpe parental em série são passadas sob condições definidas e rigidamente controladas. Algumas das mutações que ocorrem durante o crescimento destas culturas aumentam a aptidão bacteriana, e estas se propagam através das culturas pela seleção natural. Durante o experimento, as amostras das populações são periodicamente criogenicamente preservadas para criar um registro fóssil congelado não evoluindo. Um grande número de abordagens pode ser usado para caracterizar a evolução de populações bacterianas, mas os dois métodos mais comuns são ensaios de aptidão, que medem a capacidade da bactéria evoluiu para competir contra seus antepassados distantes e o sequenciamento do genoma inteiro, que é usado para identificar as alterações genéticas que a adaptação de carro. Na sequência de um trabalho pioneiro por Richard Lenski e colegas7,8, a abordagem padrão na evolução experimental tem sido a desafiar um número relativamente pequeno de populações replicar (tipicamente < 10) com a adaptação a um novo desafio ambiental, tais como novas fontes de carbono, temperatura ou um fago predatório.
Infecções causadas por bactérias resistentes aos antibióticos tornam-se um grande problema quando a resistência é alta o suficiente para que não é possível aumentar as concentrações de antibiótico para níveis letais nos tecidos do pacientes. Os clínicos são, portanto, interessados no que permite que as bactérias desenvolver resistência a altas doses de antibióticos que estão acima desta concentração de antibiótico limiar, o ponto de interrupção clínica. Como estudar isso experimentalmente? Se um pequeno número de populações bacterianas é desafiado com uma alta dose de antibiótico, como em estilo Lenski experimento e, em seguida, o resultado mais provável é que o antibiótico conduzam todas as populações à extinção. Ao mesmo tempo, se a dose de antibiótico que é usado é baixa, abaixo da concentração inibitória mínima (MIC) da estirpe parental, então é improvável que as populações bacterianas irão evoluir clinicamente relevantes níveis de resistência, especialmente se resistência carrega um grande custo. Um compromisso entre estes dois cenários é a utilização de um "resgate evolutivo" experimento9,10,11. Nesta abordagem, um número muito grande de culturas (normalmente > 40) é desafiado com doses de antibióticos que aumentam ao longo do tempo, normalmente, duplicando a concentração de antibiótica cada dia12. A marca registrada desta experiência é que qualquer população que não evolui maior resistência será conduzida à extinção. A maioria das populações que são desafiadas desta forma serão conduzidas extintas, mas uma pequena minoria persistirá evoluindo a altos níveis de resistência. Neste trabalho, mostramos como esse delineamento pode ser usado para investigar a contribuição do plasmídeo para a evolução da resistência.
As bactérias adquirem resistência a antibióticos através de duas rotas principais, mutações cromossômicas e aquisição de elementos genéticos móveis, principalmente de plasmídeos de13. Plasmídeos desempenham um papel chave na evolução da resistência aos antibióticos, porque eles são capazes de transferir genes de resistência entre as bactérias por conjugação14,15. Plasmídeos podem ser divididos em dois grupos de acordo com seu tamanho e Biologia: "pequeno", com o número elevado de cópia por célula bacteriana e "grandes", com baixa copiar número16,17. O papel de grandes plasmídeos na evolução da resistência aos antibióticos tem sido extensivamente documentado porque eles incluem conjugativo plasmídeos, que são os impulsores-chave de divulgação da resistência e multi resistência entre as bactérias15. Pequenos multicópia plasmídeos também são extremamente comuns em bactérias17,18, e eles muitas vezes codificam para genes de resistência aos antibióticos19. No entanto, o papel de plasmídeos multicópia pequenos na evolução da resistência aos antibióticos tem sido estudado em menor grau.
Em um trabalho recente, propusemos que plasmídeos multicópia poderiam acelerar a evolução dos genes que carregam pelo aumento das taxas de mutação do gene devido ao maior número de cópia gene por célula12. Usando um modelo experimental com uma cepa de Escherichia coli MG1655 e o gene de β-lactamase blaTEM-1 foi demonstrado que os plasmídeos multicópia aceleraram a taxa de aparecimento de mutações de TEM-1 confere resistência para a terceira geração Ceftazidima cefalosporina. Estes resultados indicaram que multicópia plasmídeos podem desempenhar um papel importante na evolução da resistência aos antibióticos.
Aqui, apresentamos uma descrição detalhada do método que desenvolvemos para investigar a evolução multicópia mediada por plasmídeo da resistência aos antibióticos. Este método tem três etapas diferentes: primeira, inserção do gene em estudo em um plasmídeo multicópia ou o cromossomo da bactéria anfitrião. Em segundo lugar, use da evolução experimental (resgate evolutiva) para avaliar o potencial das estirpes diferentes para se adaptar à pressão seletiva. E terceiro, determinando a base molecular subjacente a evolução mediada por plasmídeo usando DNA, sequenciamento e reconstruir as mutações suspeitas individualmente no genótipo parental.
Finalmente, embora o protocolo descrito aqui foi projetado para investigar a evolução da resistência aos antibióticos, pode-se argumentar que este método poderia ser geralmente útil para analisar a evolução das inovações adquirida por mutações em qualquer multicopy gene codificado do plasmídeo.
1. construção do sistema Experimental de codificação de Gene de resistência aos antibióticos
Nota: Aqui MG1655 de Escherichia coli foi usado como a destinatário estirpe do gene de resistência aos antibióticos plasmídeo ou cromossomo-codificado. O gene de resistência aos antibióticos é codificado no cromossomo ou de um plasmídeo multicópia em uma cepa isogénicas caso contrário (Figura 1).
2. abordagem de resgate evolutiva para experimentalmente desenvolver resistência aos antibióticos (Figura 1)
3. molecular base da evolução da resistência a antibióticos (Figura 1)
Em nosso trabalho anterior, a evolução do β-lactamase gene blaTEM-1 para conferir resistência para a terceira geração cefalosporina Ceftazidima12 foi investigada. Este gene foi selecionado porque, apesar de TEM-1 não confere resistência à Ceftazidima, mutações no blaTEM-1 podem ampliar o leque de atividade de TEM-1 para hidrolisar cefalosporinas como Ceftazidima29. As mutações em enzimas de resistência aos antibióticos, como a β-lactamases ou aminoglicosídeo modificando levando a alterações na oferta de atividade de enzimas são comuns29,30. Este sistema experimental é ideal para explorar a evolução deste tipo de enzimas. Para um relatório detalhado de uma experiência bem sucedida seguindo este protocolo, consulte San Millan et al. 201612.
Aqui, um exemplo dos resultados possíveis deste sistema experimental é apresentado para ilustrar o protocolo (Observe que os dados utilizados para este exemplo não são reais). Para investigar o papel potencial de multicopy plasmídeos na evolução do gene da resistência aos antibióticos sob estudam neste exemplo (chamemos-lhe resA), desenvolvemos o sistema experimental, seção 1 do protocolo acima descrito a seguir. Os experimentos produzem três estirpes: MG1655, MG1655::resA e MG1655/pRESA. A evolução da resistência a duas diferentes ß-lactâmicos (Ceftazidima e meropenem) foi testada seguindo os passos descritos na secção 2 do protocolo. A Figura 2 mostra as curvas de sobrevivência das populações em estudo. Neste exemplo, há um aumento significativo na sobrevivência das populações pertencentes a MG1655/pRESA evoluindo em Ceftazidima comparada de MG1655 ou MG1655::resA (teste log-rank, P< 0,05). Por outro lado, no caso de meropenem, não há nenhuma diferença significativa na sobrevivência das populações pertencentes as diferentes cepas (teste log-rank, P> 0,05). Portanto, estes resultados sugerem que a presença do gene resA em um plasmídeo multicópia potencializa a evolução da resistência a Ceftazidima mas não a meropenem.
Na etapa final do experimento, a base molecular da resistência aos antibióticos é investigada, conforme explicado na seção 3 do protocolo. Primeiro, o sequenciamento de DNA revelará as mutações em resA que poderia ser responsável para o fenótipo de resistência. E em segundo lugar, reconstrução de resA mutações no MG1655 parental (tanto no cromossomo e plasmídeo) irá confirmar ou descartar o seu papel no fenótipo de resistência aos antibióticos.
Figura 1 . Representação esquemática das diferentes fases do protocolo. Da esquerda para a direita: (i) a construção do sistema experimental: MG1655, MG1655::resA e MG1655/pRESA. Cromossomo bacteriano é representado em castanho, o plasmídeo em azul e o gene resA em vermelho. (ii) abordagem de resgate evolutiva para experimentalmente desenvolver resistência aos antibióticos: várias populações das diferentes variedades são propagadas sob aumento da concentração do antibiótico. (iii) análise da base molecular da resistência aos antibióticos: sequenciamento de DNA amostras da população evoluída e clones, detecção das mutações de resistência aos antibióticos e reconstrução destas mutações na estirpe parental. Clique aqui para ver uma versão maior desta figura.
Figura 2. Curvas de sobrevivência com concentrações crescentes de antibióticos. Representação do número de populações viáveis pertencentes a variedades MG1655, MG1655::resAe MG1655/pRESA ao longo do tempo. 48 populações de todas as estirpes foram propagadas sob concentrações crescentes de antibióticos Ceftazidima e meropenem, começando com 1/8 do MIC no dia 1 e duplicação da concentração do antibiótico todos os dias. A linha vertical tracejada vermelha representa o MIC dos antibióticos sob estudo. Observe que, no caso de ceftazidima, existem diferenças significativas na sobrevivência das populações pertencentes a diferentes cepas ao longo do tempo (teste log-rank, P< 0,05). Crucialmente, apenas populações carregando o plasmídeo são capazes de sobreviver até concentrações de alto nível de antibiótico. Por outro lado, no caso de meropenem, não há nenhuma diferença significativa na sobrevivência das populações diferentes ao longo do tempo (teste log-rank, P> 0,05). Clique aqui para ver uma versão maior desta figura.
Apresentamos um novo protocolo combinando a biologia molecular, evolução experimental e sequenciamento de DNA profundo visa investigar o papel de plasmídeos multicópia na evolução da resistência aos antibióticos em bactérias. Embora este protocolo combina técnicas de diferentes áreas, todos os métodos necessários para desenvolvê-la são simples e podem ser realizados em um laboratório de microbiologia regular. As etapas mais críticas no protocolo são provavelmente a construção de estirpes de sistema o modelo e a reconstrução das mutações observadas após a evolução experimental (que são executadas usando o mesmo método exato). No entanto, o sistema isotérmico conjunto21, simplifica significativamente este protocolo para que qualquer usuário com um nível intermediário de experiência em biologia molecular pode implementá-lo.
Outro passo crítico do protocolo é a evolução experimental sob concentrações crescentes de antibióticos. Como exemplo, este protocolo começa o experimento com ¼-1/8 do MIC de cepas e então duplicando a concentração de antibiótico todos os dias. No entanto, uma menor taxa de mudança de antibiótica pode aumentar a chance de resgate evolutivo de extinção26. Portanto, a taxa de variação das concentrações é um dos parâmetros que podem ser modificados para promover a evolução da resistência aos antibióticos.
Análise e sequenciamento de DNA também são aspectos-chave do projeto experimental. Os resultados são mais simples quando sequenciamento é realizado em amostras de DNA de populações inteiras e de clones individuais, nos pontos de tempo diferente no experimento. Resultados de populações de sequenciamento revelará gerais diferenças nos perfis de mutação entre tratamentos, bem como varreduras seletivas de mutações benéficas ao longo do tempo e eventos potenciais de interferência clonal. Ao analisar sequências de populações, é melhor filtrar as mutações que nunca ultrapassaram os 10% de frequência em qualquer população. Sequências de clones individuais ajudam a confirmar os resultados obtidos com as populações e, sobretudo, revelam as combinações específicas entre as diferentes mutações observadas a nível da população. Estas associações específicas podem ajudar a descobrir epistatic interações entre mutações, que desempenham um papel crítico na adaptação bacteriana31.
Usando esse método, recentemente mostramos que plasmídeos multicópia aceleram a evolução da resistência aos antibióticos, primeiro aumentando a taxa de aparecimento de novas mutações e, em seguida, amplificando o efeito das mutações devido a dosagem aumentada do gene12 . Portanto, nós desenvolvemos o método como uma ferramenta para investigar a evolução da resistência aos antibióticos, mas pode ter uma gama muito ampla de aplicações. Ou seja, este sistema poderia ser usado para investigar a capacidade de qualquer gene bacteriano para evoluir para uma função nova ou melhorada de forma mais geral. Este sistema poderia ser usado, por exemplo, para testar a capacidade de uma enzima/via metabólica para uso de substratos de carbono novo32. Além disso, poderia ser usado em vez de hypermutators (bactérias com um defeito nos sistemas celulares envolvidos no reparo de ADN incompatibilidade) para investigar a evolução do gene adaptável em bactérias, evitando o preconceito mutacional, introduzido por hypermutators.
Os autores não têm nada para divulgar.
Este trabalho foi financiado pelo Instituto de Salud Carlos III (plano Estatal de eu + D + eu 2013-2016): concede CP15-00012, PI16-00860 e CIBER (0053/CB06/02), co-financiado pelo Fundo Europeu Desenvolvimento Regional ' uma maneira de alcançar a Europa ' (FEDER). JAE é suportado pelo programa de atração de talento do governo da região de Madrid (2016-T1/BIO-1105) e a I + D de Excelencia de espanhol Ministerio de Economía, Industria y competitividade (BIO2017-85056-P). ASM é apoiado por uma bolsa de Servet Miguel do Instituto de Salud Carlos III (MS15/00012), co-financiado pelo Fundo Social Europeu "Investir no seu futuro" (FSE) e do FEDER.
Name | Company | Catalog Number | Comments |
Thermocycler | BioRad | C1000 | |
Electroporator | BiorRad | 1652660 | |
Electroporation cuvettes | Sigma-Aldrich | Z706078 | |
NanoDrop 2000/2000c | Thermo Fisher Scientific | ND-2000 | Determine DNA quality measuring the ratios of absorbance 260nm/280nm and 260nm/230nm |
Incubator | Memmert | UF1060 | |
Incubator (shaker) | Cole-Parmer Ltd | SI500 | |
Electrophoresis power supply | BioRad | 1645070 | Agarose gel electrophoresis |
Electrophoresis chamber | BioRad | 1704405 | Agarose gel electrophoresis |
Pippettes | Biohit | 725020, 725050, 725060, 725070 | |
Multi-channel pippetes | Biohit | 728220, 728230, 728240 | |
Plate reader Synergy HTX | BioTek | BTS1LF | |
Inoculating loops | Sigma-Aldrich | I8388 | |
96-well plates | Falcon | 351172 | |
LB | BD Difco | DF0446-17-3 | |
LB agar | Fisher scientific | BP1425-500 | |
Phusion Polymerase | Thermo Fisher Scientific | F533S | |
Gibson Assembly | New England Biolabs | E2611S | |
Resctriction enzymes | Fermentas FastDigest | ||
Antibiotics | Sigma-Aldrich | ||
QIAprep Spin Miniprep Kit | Qiagen | 27104 | Plasmid extraction kit |
Wizard Genomic DNA Purification Kit | Promega | A1120 | gDNA extraction kit |
DNeasy Blood & Tissue Kits | Qiagen | 69506 | gDNA extraction kit |
Electroporation cuvettes | Sigma-Aldrich | Z706078 | |
Petri dishes | Sigma-Aldrich | D9054 | |
Cryotubes | ClearLine | 390701 | |
96-well plates (-80ºC storage) | Thermo Fisher Scientific | 249945 | |
QuantiFluor dsDNA System | Promega | E2670 | Quantification of DNA concentartion |
Agarose | BioRad | 1613100 | Agarose gel electrophoresis |
50x TAE buffer | BioRad | 1610743 | Agarose gel electrophoresis |
T4 Polynucleotide Kinase | Thermo Fisher Scientific | EK0031 | |
T4 DNA Ligase | Thermo Fisher Scientific | EL0014 |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados