Method Article
A protocol is described for the characterization of the key electrochemical parameters of a boron doped diamond (BDD) electrode and subsequent application for in situ pH generation experiments.
Boron diamant dopé (BDD) électrodes ont montré prometteur comme matériau d'électrode où beaucoup de leurs propriétés telles que rapportées fenêtre étendue solvant, faible courant de base, résistance à la corrosion, etc., découlent de la nature catalytique inerte de la surface. Cependant, si pendant le processus de croissance, non-diamant en carbone (NDC) est incorporé dans la matrice d'électrodes, les propriétés électrochimiques changent lorsque la surface devient plus catalytiquement actif. En tant que tel, il est important que la électrochimiste est conscient de la qualité et des propriétés électrochimiques résultant clés de l'électrode BDD avant utilisation. Ce document décrit une série d'étapes de caractérisation, y compris la microscopie Raman, la capacité, la fenêtre solvant et redox électrochimie, de vérifier si l'électrode BDD contient négligeable NDC dire négligeable sp 2 carbone. Une application est mise en surbrillance qui tire parti de la catalytiquement inerteet à la corrosion résistant à la nature d'une surface NDC-libre-à-dire protons locale stable et quantifiable et la production d'hydroxyde raison de l'électrolyse de l'eau à une électrode BDD. Une approche pour mesurer le changement de pH locale induite par électrolyse de l'eau à l'aide d'oxyde d'iridium électrodes enrobées BDD est également décrite en détail.
Choix du matériau d'électrode est d'une grande importance lorsqu'ils procèdent à une étude électroanalytique. Au cours des dernières années, sp 3 carbone (diamant) dopé avec du bore suffisante pour rendre la matière "métal-like" est devenu un choix populaire pour un large éventail d'applications électroanalytiques raison de son excellente électrochimique (et thermiques et mécaniques) propriétés 1,2 , 3. Ceux-ci comprennent la résistance à la corrosion dans la solution, température et de pression des conditions extrêmes 4 ultra-larges fenêtres de solvants, faible courant de base, et l'encrassement réduite, en comparaison à d'autres matériaux d'électrode couramment utilisés 5-7,3. Cependant, l'augmentation non-diamant en carbone (NDC: sp 2) résultats de contenu dans une fenêtre de solvant, ce qui augmente la diminution des courants de fond 7,8, changements à la fois une intégrité structurelle et sensibilité à l'égard de différentes espèces sphère d'oxydo-réduction, par exemple intérieures. l'oxygène 9-12.
Remarque pour siMe applications, la présence NDC est considérée comme avantageuse 13. En outre, si le matériau ne contient pas de bore suffisante, il se comporte comme un type p et semi-conducteur montrer une sensibilité réduite aux espèces redox dans la fenêtre de potentiel réducteur, où le matériau est plus appauvrie en porteurs de charge 7. Enfin, la chimie de surface de diamant dopé bore (BDD) peut également jouer un rôle dans la réponse électrochimique observée. Cela est particulièrement vrai pour les espèces intérieures de la sphère qui sont sensibles à la chimie des surfaces et de réduire diamant dopé où l'hydrogène (H -) - surface résilié peut faire une BDD électrode de semi-conducteur apparaît "comme le métal-" 7.
Pour profiter des propriétés supérieures de BDD, il est souvent essentiel du matériau est suffisamment dopé et contient aussi peu que possible NDC. En fonction de la méthode adoptée pour développer la BDD, les propriétés peuvent varier de 14,15. Cet article propose d'abord un matériel et d'un éluGuide rochemical de protocole de caractérisation pour évaluer BDD électrode aptitude avant de l'utiliser (ie suffisamment de bore, minime NDC), puis décrit une application basée sur le changement de pH localement électrochimique en utilisant l'électrode de protocole-vérifié. Ce processus prend avantage de la résistance de surface du NDC sans BDD vers corrosion ou dissolution en vertu de l'application des extrêmes appliquée potentiels (ou les courants) pendant de longues périodes de temps. En particulier, l'utilisation d'une électrode pour générer BDD stable proton (H +) ou l'hydroxyde (OH -) en raison de fondants électrolyse (oxydation ou de réduction, respectivement) de l'eau à proximité étroite d'une deuxième (capteur) 16,17 est décrit aux présentes.
De cette manière, il est possible de contrôler le pH de l'environnement du capteur d'une manière systématique, par exemple pour des expériences de titrage pH, ou pour fixer le pH à une valeur où le procédé électrochimique est la plus sensible. Ce dernier est particulièrement utile pourles applications où le capteur est placé à la source, par exemple, rivière, mer et le pH du système ne sont pas optimaux pour la mesure électrochimique d'intérêt. Deux exemples récents comprennent: (i) génération d'un pH faible localisée, dans une solution de pH neutre, pour le dépôt électrolytique de décapage et de mercure 17; noter BDD est un matériau privilégié pour électrodéposition des métaux due à la fenêtre cathodique prolongée 9,18,19. (ii) la quantification de la forme détectable par voie électrochimique de l'hydrogène sulfuré, présent à un pH élevé, en augmentant localement le pH de neutre à alcalin fortement 16.
NOTE: BDD electrodes are most commonly grown using chemical vapor deposition techniques, attached to a growth substrate. They leave the growth chamber H-terminated (hydrophobic). If grown thick enough the BDD can be removed from the substrate and is termed freestanding. The freestanding BDD growth surface is often polished to significantly reduce surface roughness. Cleaning the BDD in acid results in an oxygen (O)-terminated surface.
1. Acid Cleaning BDD
2. Contact Angle Measurement
3. BDD Material Characterization
4. Electrochemical Characterization
5. pH Generation: Preparation of pH Sensitive Electrode and pH Generation
Raman spectra and electrochemical characteristics were obtained for representative BDD macrodisc electrodes with different dopant densities, and both significant and negligible levels of NDC, Figures 1 and 2. Figures 1A and B show typical Raman data for NDC-containing thin film microcrystalline BDD and larger grain freestanding BDD, doped above the metallic threshold, respectively. The presence of NDC is identifiable by the labeled broad peaks between 1,400 and 1,600 cm-1; there is no such peak visible in Figure 1C, which shows the typical Raman signature of NDC-free, freestanding BDD. In all three spectra in Figure 1 it is possible to observe a sharp peak at 1,332 cm-1, this is the signature peak of sp3 carbon (diamond); asymmetry of the baseline around this peak is known as a "Fano resonance" and if present indicates that the sample is suitably doped (1020 B atoms cm-3) for use in electrochemical studies. This is the case for all three electrodes shown here.
In Figure 2 example data for electrochemical studies (capacitance, solvent window and CVs recorded in the redox mediator Ru(NH3)63+) are presented for both NDC-containing and NDC-free BDD, doped above the metallic threshold. The capacitance curves in Figure 2A clearly indicate that NDC-containing BDD exhibits a greater capacitive current than NDC-free BDD. The capacitances for each has been calculated as described in the text and are quoted in Figure 2A as 10.8 µF cm-2 (NDC-containing) and 6.3 µF cm-2 (NDC-free) BDD. High quality, low NDC-content, BDD electrodes are expected to have a capacitance <<10 µF cm-2. Similarly, Figure 2B compares the solvent windows of exemplar NDC-containing and NDC-free BDD electrodes. It can be seen that for an NDC-containing electrode the onset of H2O oxidation and reduction has been brought in significantly, narrowing the solvent window. Also of note is the appearance of anodic peaks due to the oxidation of NDC and a cathodic peak due to ORR which is catalyzed on NDC but not on sp3 carbon. For a high quality BDD electrode with negligible NDC the solvent window is expected to be >>3 V in aqueous KNO3 solution. In Figure 2C the CV response of BDD electrodes with a variety of doping levels are investigated using the redox mediator Ru(NH3)63+. For BDD electrodes doped above the metallic threshold, the voltage separation between the anodic and cathodic current peaks is expected to be close to 59 mV, in accordance with the Nernst equation; however, as the dopant level decreases the material becomes depleted of charge carriers resulting in an increase in the peak to peak separation.
A BDD macrodisc, coated in IrOx, was used to record the data in Figure 3, while all diamond (BDD insulated in diamond)39 dual electrodes and an epoxy sealed BDD ring disc electrode were used for the pH generation experiments in Figure 4A. The data in Figure 3 illustrates the deposition and characterization process for a pH sensitive IrOx film on BDD. In Figure 3A a typical CV recorded in the IrOx deposition solution is shown. The potential employed for subsequent IrOx deposition can be identified from the position of the oxidative current peak, as illustrated here. Figure 3B is an exemplar CV in sulfuric acid of an IrOx film electrodeposited on BDD. The shape of the CV is characteristic of a successfully deposited film with the peak current density providing information on film thickness. A higher current density indicates a thicker film. The stability of the film is thickness dependent; too thin and the pH response will drift, too thick and the film response time will be slow and the film can flake off. A value for peak current density ~0.7 mA cm-2 has been shown to indicate a stable film with an excellent pH response. The OCP response of the IrOx layer on a BDD electrode towards different pH buffers is shown in Figure 3C. The drift between measurements is small as evidenced by the size of the error bars and the slope is super-Nernstian (>59 mV) as expected for this type of film.
Finally, Figure 4 illustrates the use of a BDD electrode for pH generation. In Figure 4A the pH change measured at an IrOx coated BDD electrode is presented for a range of currents applied to the pH generation BDD electrode placed nearby, either in ring or band format, as illustrated in Figure 4. For different applied currents, the pH can be changed locally and quantifiably from a starting value (near neutral) to either acidic or alkaline. This process can be observed visually as illustrated in Figure 4B, where a suitable current density is applied to a BDD electrode to change the pH from close to neutral to >10.5. In the presence of phenolphthalein (pH indicator) this results in the solution going from colorless to pink, in the vicinity of the electrode.
Figure 1. Typical Raman data recorded with a 514 nm laser on (A) NDC containing thin film microcrystalline BDD attached to the growth substrate (dopant density 1.9 × 1020 boron atoms cm-3) and (B, C) larger grain freestanding BDD, average dopant density 1.9 × 1020 and 3 × 1020 B atoms cm-3 respectively. NDC is evident in (A) and (B) due to the presence of the labeled NDC peaks between 1,400 and 1,600 cm-1, (C) contains negligible NDC. All three electrodes show a "Fano resonance" and thus are suitably boron doped for electrochemical studies7. Reproduced in part from reference [4c] with permission. Please click here to view a larger version of this figure.
Figure 2. Electrochemical characterization. All representative data in (A, B) has been recorded on insulating diamond encased O-terminated BDD electrodes doped above the metallic threshold i.e. 1020 B atoms cm-339. (A) Capacitance curves for NDC-free BDD where C = 6.3 µF cm-2 (black), and for NDC-containing BDD where C = 10.8 µF cm-2 (red). (B) Representative solvent windows for NDC-free BDD, solvent window > 3.95 V (black) and for NDC-containing BDD, solvent window = 3.22 V (red). (C) CVs recorded in 1 mM Ru(NH3)63+ at 0.1 V sec-1 for glass sealed freestanding BDD macrodisc electrodes of different boron dopant densities in the range 9.2 × 1016 - 3 × 1020 B atoms cm-3. Reproduced in part from reference [4c] with permission. Please click here to view a larger version of this figure.
Figure 3. Characterization of IrOx film deposition on BDD and pH response. (A) CV in IrOx solution prior to deposition. The maximum oxidation current provides a value for the deposition potential, Edep, where film formation is found to be most efficient. Using potentials > Edep, results in an unstable deposited film. (B) Characteristic CV for an electrodeposited IrOx film in 0.1 M H2SO4 recorded at 0.1 V sec-1; ip,a is typically ~ 0.7 mA cm-2. (C) Representative pH calibration curve (R2 = 0.997) for electrodeposited IrOx on a freestanding BDD electrode. The slope shows a super-Nernstian response (65.4 mV) to pH. The small error bars (n=3) indicate film stability and reproducibility in the measurements. Please click here to view a larger version of this figure.
Figure 4. Use of a freestanding BDD ring disc and dual band electrodes for in situ pH control. BDD ring disc electrode, disc diameter = 0.922 mm, separation = 0.262 mm, and ring width = 0.150 mm; BDD band electrode generator = 0.460 × 3 mm, detector = 0.09 × 3 mm, and separation = 0.2 mm. (A) Experimentally measured pH versus time profile over the detector electrodes as a function of applied galvanostatic current (+10 to +50 μA at the ring disc electrode and -0.5 to -8 µA for the dual band electrode). Note the stable pH generated over long periods of time. Modified reproduction of references [9a] and [9b]. (B) Simple visualization of in situ pH generation using phenolphthalein indicator solution; a current of -4.55 µA (-0.58 mA cm-2) was applied to a 1 mm diameter glass sealed BDD macroelectrode. The pink color indicates pH≥10.5, colorless solution indicates pH≤8.4 38. Please click here to view a larger version of this figure.
Starting with an O-terminated surface is advocated because the H-terminated surface is electrochemically unstable, especially at high anodic potentials7,40,41. Changing surface termination can affect the electron transfer kinetics of inner sphere couples, such as water electrolysis (used herein to change the local solution pH). Furthermore, if the BDD contains significant NDC at grain boundaries it is also possible that upon application of the extreme anodic/cathodic potentials advocated in this article for pH generation, etching could occur at these weaker points. This would cause the film to corrode and for thin films, eventually delaminate, manifesting itself in an unstable pH generation profile, as seen with thin film Au and Pt electrodes17. Hence a stringent protocol for assessing the quality of the electrode prior to use is adopted to assess NDC content as discussed in Figures 1 (Raman) and 2 (capacitance and solvent window).
Also of importance is the boron content. If the material is doped below the metallic threshold (< 1020 B atoms cm-3), it will be charge depleted, at potentials negative of the flatband potential, resulting in a decrease in electrochemical performance7,42. The easiest way to qualitatively assess metallic doping levels is to look for the presence of a Fano signature which causes asymmetry in the sp3 peak, in the Raman spectra, as shown in Figure 1(A-C). This is due to interference between the discrete phonon state and the electronic continuum and is seen at boron doping levels > 1020 B atoms cm-343. Secondary ion mass spectrometry (SIMS) ultimately quantifies boron content but is destructive and more intensive to use. Note as SIMS provides total boron content it does not account for possible reductions in the number of freely available charge carriers due to compensation or passivation of boron acceptors with suitable donors such as nitrogen44 or hydrogen45 respectively.
Electrochemically, dopant density differences can be visualized by employment of an outer sphere fast electron transfer redox couple whose formal potential lies within the band-gap of O-terminated semi-conducting BDD, such as Ru(NH3)63+/2+ 46. For example, as shown in Figure 2C, as the doping levels of the BDD electrode increase, and the material moves from semi-conducting to metallic the current increases and the peak to peak separation decreases as electron transfer becomes more facile. At metallic dopant levels the electrode should show behavior similar to a classical electrode where for a mediator such as Ru(NH3)63+, reversible diffusion limited CVs are recorded at a macroelectrode in stationary solution. Note, at boron dopant levels ~ 1019 close to reversible behavior has been recorded but only for H-terminated surfaces. This is due to an interesting peculiarity of this surface where H-terminated causes the energy levels of the valence and conduction bands in diamond to be raised. This means electron transfer from the valence band to H3O+ is now possible, resulting in surface transfer doping and a measurable surface conductivity. However, due to the electrochemical instability of the H-terminated surface, especially at high anodic potentials, working with H-terminated lower dopant density electrodes is not a long-term viable approach7,40,41.
The ability to modify the local pH of the measurement electrode has many different applications, for example local pH titration experiments now become possible where the pH can be systematically modified and the impact on the system electrochemically assessed in situ. Bound metal ions can be freed by decreasing pH enabling the sensor electrode to both assess free metal content at the natural pH and total metal content by locally decreasing to very acidic values, in situ47-50. This is very useful for at the source measurements. Additionally, species can be switched from not being electrochemically detectable to detectable by virtue of changing the local pH, e.g. dissolved hydrogen sulfide completely converts to the electrochemically detectable sulfide form at pH values > 9 16. In the example given, for the electrode geometries employed, pH changes over 4 units (from 6.4 to 2.0 and 6.0 to 10.8) were demonstrated. Larger changes are possible by increasing the galvanostatic current and changing the electrode geometries. For example, decreasing the separation between the generator and detector electrodes and reducing the relative size of the detector will allow lower/higher pH values to be attained. The feature size of the BDD electrode will be limited by the resolution of the fabrication technique employed. Note, there is also an upper limit to the size of the current able to be passed for stable pH generation. This is dictated by the current at which significant gas evolution and bubble formation at the generating electrode is observed.
The authors declare that they have no competing financial interests.
We would like to thank Dr. Jonathan Newland for the photograph in Figure 4B and for processing optical microscope images for the video, Miss Jennifer Webb for advice and visuals on contact angle measurements, Miss Sze-yin Tan for the solvent window data in Figure 2B, Dr Maxim Joseph for advice on Raman spectroscopy, and also members of the Warwick Electrochemistry and Interfaces Group who have helped to develop the protocols described herein. We would also like to thank Max Joseph, Lingcong Meng, Zoe Ayres and Roy Meyler for their part in filming the protocol.
Name | Company | Catalog Number | Comments |
Pt Wire | Counter Electrode | ||
Saturated Calomel Electrode | IJ Cambria Scientific Ltd. | 2056 | Reference Electrode (alternatively use Ag|AgCl) |
BDD Electrode | Working Electrode | ||
Iridium Tetrachloride | VWR International Ltd | 12184.01 | |
Hydrogen Peroxide | Sigma-Aldrich | H1009 | (30% w/w) Corrosive |
Oxalic Acid | Sigma-Aldrich | 241172 | Harmful, Irritant |
Anhydrous Potassium Chloride | Sigma-Aldrich | 451029 | |
Sulphuric Acid | VWR International Ltd | 102765G | (98%) Corrosive |
Potassium Nitrate | Sigma-Aldrich | 221295 | |
Hexaamine Ruthenium Chloride | Strem Chemicals Inc. | 44-0620 | Irritant |
Perchloric Acid | Sigma-Aldrich | 311421 | Oxidising, Corrosive |
2-Propanol | Sigma-Aldrich | 24137 | Flammable |
Nitric Acid | Sigma-Aldrich | 695033 | Oxidising, Corrosive |
Sputter/ Evapourator | With Ti & Au targets | ||
Raman | 514.5 nm laser | ||
Annealing Oven | Capable of 400 °C | ||
Ag paste | Sigma-Aldrich | 735825 | or other conductive paint |
Potentiostat | |||
pH Buffer solutions | Sigma-Aldrich | 38740-38752 | Fixanal buffer concentrates |
Phenolphthalein Indicator | VWR International Ltd | 210893Q | |
Methyl Red Indicator | Sigma-Aldrich | 32654 |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon