Method Article
系统,大型合成基因(基因或基因上位性)互动屏幕可用于,探索遗传冗余和途径串扰。在这里,我们描述了一种高通量的定量合成基因阵列筛选技术,被称为ESGA我们制定的,阐明互作关系,并探索遗传相互作用网络大肠杆菌。
表型是由一系列复杂的物理( 例如,蛋白质-蛋白质)和功能( 例如基因的基因或基因)的相互作用(GI)的1。虽然身体的相互作用可以表明,细菌蛋白相关复合,他们不一定透露途径级的功能relationships1的。 GI屏幕,其中带有两个缺失或失活的基因的双突变体的增长是衡量和相应的单突变体相比,可以照亮上位性位点之间的依赖关系,从而提供了一种查询和发现新的功能关系2。大型GI地图真核生物如酵母3-7,但GI信息仍稀疏,为原核生物8,阻碍了细菌的基因组功能注释。为此,我们和其他人开发的高通量定量细菌GI筛选方法9,10 在这里,我们提出所需的关键步骤进行定量E.大肠杆菌的合成遗传的阵列(ESGA)筛选程序,在基因组规模9,使用天然细菌接合和同源重组系统产生和测量的健身大量的双突变体在殖民地阵列格式。简单地说,一个机器人是用来传输通过结合,氯霉素(Cm) - 的突变等位基因,从设计HFR(高频重组)的“供体菌株的成有序的阵列卡那霉素(Kan)的 - 显着的F-受体菌。通常情况下,我们使用损失的,功能单一的非必需的基因缺失突变体轴承( 例如 “庆应义塾”系列11)亚效等位基因突变和必需的基因( 即基因赋予蛋白表达减少,稳定或活动9,12,13)协会非必要和必需的基因,水库查询功能pectively。共轭和随后通过同源重组介导的遗传交换后,将所得的双突变体包含两种抗生素的固体培养基上选择。后的产物,数字成像板和殖民地的大小进行定量计分使用一个内部的自动图像处理系统14。地理标志显示时的双突变体的增长速度是显着高于或低于预计9。加重(或负)的地理标志常常导致撞击上的相同的基本处理流程2的补偿途径,对基因的功能缺失型突变的之间。在这里,一个单一的基因被缓冲的损失,例如,可以是单突变体是可行的。然而,这两个途径是有害的损失和合成致死或疾病的结果( 即增长缓慢)。相反,减轻(或正)的相互作用可以在同一个途径或蛋白复合物2作为基因之间发生删除单独任何一个基因的往往是足以扰乱途径或复合物,例如,额外扰动不降低活性,因此生长,进一步的正常功能。总体而言,系统地识别和分析GI网络可以提供公正,世界地图,大量的基因,错过了其他方法的途径级别的信息可以推断出9之间的功能关系。
1。构建HFR Cavalli的供体突变株的重组工程15,16
用于构造的ESGA捐助污渍的步骤描述如下。简单地说,我们使用有针对性的λ - Red介导的同源重组所产生的PCR扩增可选择的DNA标记盒的片段创建非必需基因缺失突变株(1.1节),或者必需的基因亚效等位基因突变体供体株(1.2节),然后用16 “查询”定义GI网络。
注:在技术发展过程中,我们使用HFR-介导的接合转移相结合的突变使用一个明确的的HFR供体菌(HFR卡瓦利,HFR·海斯和HFR 3000)的成效进行评估。我们研究(I)的能力,有效地使捐助者的突变体,利用重组工程的方法,Yu等人开创的。 (2000)16,(ⅱ)的相对效率的接合DNA转移的不同的染色体标记物,及(iii)查询的基因的位置和染色体相对HFR转移轨迹,ORIT取向的影响。我们发现,λ - ,在HFR比HFR海耶斯或Hfr3000的的Cavalli的Red介导的同源重组效率要高得多。 P1转导或的的的伪HFR菌株17,如果需要,可以使用创建突变捐助国。我们已经成功地适应了所有这些方法和筛选大量的捐助者。因为在我们的试验中结合实验,观察到的是整体的传输效率和前接合子的数量明显HFR卡瓦利,这种特殊的应变背景所选择,捐助建设和大型ESGA的。 HFR卡瓦利捐助者的ESGA屏幕使用的所有程序进行了说明。
2。排列E.大肠杆菌 F-收件人突变体ESGA屏幕
3。高密度应变配套程序生成E.大肠杆菌双突变体
4。处理数据和派生GI成绩
N 1“SRC =”/ files/ftp_upload/4056/4056eq1.jpg“/>
凡S 变种 =(变种地契 ×(Ň 地契 -1)+变种连拍 x( 续 -1))/(正地契 + N 连拍 -2);变种实验 =最大方差归一菌落大小为双突变体,无功连续中位数差异的归一化双突变体菌落大小的参考集,N 进出口数=双突变的细胞集落尺寸的测量,N 连续重复实验的中位数在所有的实验中,μ 曝光中位数归殖民地尺寸的双突变体; 续 μ=归一化双突变体的产生从单一的供体突变株的菌落大小的中位数。 S-的得分既反映了统计的一个假定的digenic交互的信心,以及生物相互作用强度。强阳性的S-分数表示缓和作用,Suggesting,相互作用的基因参与,同时显着负S-分数反映合成的疾病或致死率,这往往是暗示并联冗余路径9成员在同一个途径9。对于确定的路径级的功能性关系,每个测试的基因对单一的S-的得分为产生从最后的数据集。
注:9在我们以前的研究中,我们发现,重组往往发生在30 kbp的基因之间的彼此。因此,对于下游分析,规范化和得分一代,我们会删除30 kbp的基因在彼此之间的相互作用。以除了地理标志本身,对基因之间的功能关系可以调查,看着多么相似的两个基因的GI公司。 GI的档案的基因以外的基因组中的所有其他的基因,该基因组的所有交互该基因的连锁区域。功能相似的基因往往有较高的相关性,基因间的12,25。因此,通过计算所有基因的实验数据集的相关系数,可以使用ESGA调查即使彼此紧贴的染色体上的基因之间的功能关系。
GIs reveal functional relationships between genes. Similarly, since genes in the same pathway display similar GI patterns and the GI profile similarity represents the congruency of phenotypes, we can group functionally related genes into pathways by clustering their GI profiles. Integrating GI and GI correlation networks with physical interaction information or other association data, such as genomic context (GC) relationships can also reveal the organization of higher-order functional modules that define core biological systems (and system crosstalk) in bacteria. For example, as with yeast4, 6, 7, 26, E. coli gene pairs exhibiting alleviating interactions that also have highly correlated GI profiles tend to encode proteins that are either physically associated (e.g. form a complex; Figure 4a) or that act coherently in a common biochemical pathway (e.g. components in a linear cascade). A representative example is shown in Figure 4b, where the components of the functionally redundant Isc and Suf pathways, which jointly participate in the essential Fe-S biosynthesis process, form distinct clusters that are linked together by extensive aggravating interactions (i.e. synthetic lethality). A statistical measure (e.g. hypergeometric distribution function27) can be used on GI or GI correlation data to find significant enrichment for interactions between and within pathways (Figure 4c). Cluster analysis can also be applied to functional networks derived using eSGA to predict the functions of genes lacking annotations5, 6, 9, 28-30 (Figure 4d). Since clustering algorithms vary, however, putative functional assignments determined through clustering require independent experimental verification.
Figure 1. The construction and confirmation of Hfr Cavalli non-essential single gene deletion donor strains. The panels (adapted from14) illustrate the deletion of E. coli chromosomal ORF (A) and the three primer sets used for confirming (B) the correctly generated mutant Hfr Cavalli donor strain. Amplifications from a correctly constructed deletion donor strain should produce (i) 445 bp, (ii) 309 bp, and (iii) 1.4 kb products. See protocol text for details. Click here to view larger figure.
Figure 2. The construction and confirmation strategies of essential hypomorphic donor mutant strains in an Hfr Cavalli genetic background. The panels illustrate the creation of hypomorphic mutations of essential genes through recombineering technology (A) and the primer sets (B) used for the PCR confirmation of essential gene hypomorphic mutations. See protocol text for details.
Figure 3. Schematic summary of key eSGA steps. The Hfr donor (marked with chloramphenicol resistance, CmR) and recipient F- (marked with kanamycin resistance, KanR) mutant strains are grown in 384-colony density on LB-Cm and LB-Kan plates, respectively. The donor and the recipient strains are conjugated by pinning them over each other onto an LB plate, which is then incubated overnight at 32 °C. Consequently, the conjugants are pinned onto plates containing both Kan and Cm to select double mutants. The double mutant plates are digitally imaged and the growth fitness of the colony sizes is quantitatively scored to identify aggravating and alleviating interactions.
Figure 4. Representative computational analyses of genetic interaction (GI) scores for determining pathway-level functional relationships. (A) Panel I, Distribution of correlation coefficients between the GI profiles of gene pairs encoding proteins linked by protein-protein interactions (PPI) versus randomly drawn gene pairs. The p-value was computed using the two-sample Kolmogorov-Smirnov (KS) test; Panel II, Scatter plot of correlated genetic profiles from rich media (RM) for two transporters (mdtI, mdtJ) that form a heterodimeric complex required for spermidine excretion. (B) The hierarchical clustering of the GI sub-network adapted from Butland et al.9 highlights the functional connectivity between components of the previously known Isc and Suf pathways with similar GI patterns. Pink represents aggravating (negative S-score) interactions, green represents alleviating (positive S-score) interactions and black represents absence of GI. A predicted novel component of the SUF pathway, ydhD, displays GIs with the members of the Isc pathway. (C) Pathway cross-talk recorded among cell envelope processes that are significantly enriched for aggravating or alleviating GI according to the hypergeometric enrichment analysis27. (D) A GI sub-network predicts the role of two functionally unannotated genes, yceG and yebA, in peptidoglycan splitting based on their pattern of strong alleviating interactions with well-known cell division peptidoglycan hydrolases. The figures shown in panels A, C and D are adapted from Babu et al. (2011)12. Click here to view larger figure.
我们提出了一个逐步的协议,,为使用机器人ESGA筛选,调查细菌的基因的功能,通过询问GI的途径。这种方法可以被用来研究单个基因,以及在大肠杆菌中的整个生物系统大肠杆菌 。小心地执行上述实验步骤,包括所有适当的控制措施,并进行认真分析和独立验证的GI的数据是新功能的发现成功的ESGA的关键方面。此外ESGA,在概念上类似的方法研究GI E.被称为GIANT大肠杆菌, 大肠杆菌 ,可以用来照亮新的功能性的关系,往往错过了其他的方法,如蛋白质组学23或表型的13屏幕。然而,由于与任何全基因组的方法,限制的适用性ESGA或GIANT大肠杆菌的存在,例如,其他细菌。这在一定程度是导致的大多数细菌物种的全基因组单基因缺失突变株的集合不可用,特别是对物种进行有针对性的突变也阻碍了低自然频率的同源重组。在这种情况下,使用诸如随机可追踪TnSeq 31像诱变作用为基础的检测方法的基因中断可以潜在地用于调查细菌基因的功能。概述了新兴替代的细菌基因的筛选程序,审查文件由Gagarinova和Emili(2012年)32。
虽然GI方法往往会发现许多有趣的连接提示的新颖的机械连接,整合这些数据与表型分析13,物理相互作用网络22,23日 ,和GC-推断协会的其他信息,如可以是特别的信息。例如,如与GI网络,GC协会,这是基于对保护(操纵子)的基因顺序,细菌的基因融合,操纵子的重组频率的预测整个基因组操纵子的间隔距离,以及系统发育分析33可以提供额外的见解细菌细胞如何组织蛋白复合物的,功能途径调解和协调重大细胞过程12,23。
大肠杆菌是主力了解其他革兰阴性菌的分子生物学研究的模型。 GI为此,ESGA的数据可以用于比较基因组学的信息( 例如系统进化分析,基因表达分析)调查发现ESGA在其他变形菌的种类和功能的关系,原核类群的进化保守性的结合。此外,产生的数据的交互为E.也可以使用大肠杆菌,来洞察发现metageno微生物通路架构话筒,功能注释所缺乏的。由于许多基因被广泛保守的所有微生物23,因为对抗生素的敏感性,可以提高一定的遗传扰动34,照亮ESGA的功能关系甚至可能被利用,设计创新相结合的药物治疗。
没有利益冲突的声明。
这项工作是从基因组加拿大,安大略基因组研究所和加拿大卫生研究院拨款,JG和AE AG的资金支持,是一个收件人的凡尼尔加拿大研究生奖学金。
Name | Company | Catalog Number | Comments |
I. Antibiotics | |||
Chloramphenicol | Bioshop | #CLR201 | |
Kanamycin | #KAN201 | ||
Ampicillin | # AMP201 | ||
2. Luria-Bertani medium | |||
LB powder | Bioshop | #LBL405 | |
Agar | Bioshop | #AGR003 | |
3. Bacterial Strains and Plasmids | |||
Hfr Cavalli strain λred system (JL238) | Babu et al.14. | ||
pKD3 | E. coli Genetic Stock Centre, Yale | ||
Keio E. coli F- recipient collection | National BioResource Project (NBRP) of Japan11 | ||
Hypomorphic E. coli F- SPA-tag strains | Open biosystems; Babu et al.14 | ||
4. Primers | |||
pKD3-based desalted constant primers | F1: 5'-GGCTGACATGGGAATTAGC-3' R1: 5'-AGATTGCAGCATTACACGTCTT-3' | ||
Desalted custom primers | Cm-R: 5'-TTATACGCAAGGCGACAAGG-3' Cm-F: 5'- GATCTTCCGTCACAGGTAGG-3' | ||
Desalted custom primers | F2 and R2: 20 nt constant regions based on pKD3 sequence and 45 nt custom homology regions F2 constant region: 5'-CATATGAATATCCTCCTTA-3' R2 constant region: 5'-TGTGTAGGCTGGAGCTGCTTC-3'S1 and S2: 27 nt constant regions for priming the amplification of the SPA-Cm cassette and 45 nt custom homology regions S1 constant region: 5'AGCTGGAGGATCCATGGAAAAGAGAAG -3' S2 constant region: 5'- GGCCCCATATGAATATCCTCCTTAGTT -3' KOCO-F and KOCO-C: 20 nt primers 200 bp away from the non-essential gene deletion site or the essential gene SPA-tag insertion site | ||
5. PCR and Electrophoresis Reagents | |||
Taq DNA polymerase | Fermentas | # EP0281 | |
10X PCR buffer | Fermentas | # EP0281 | |
10 mM dNTPs | Fermentas | # EP0281 | |
25 mM MgCl2 | Fermentas | # EP0281 | |
Agarose | Bioshop | # AGA002 | |
Loading dye | NEB | #B7021S | |
Ethidium bromide | Bioshop | # ETB444 | |
10X TBE buffer | Bioshop | # ETB444.10 | |
Tris Base | Bioshop | # TRS001 | |
Boric acid | Sigma | # T1503-1KG | |
0.5 M EDTA (pH 8.0) | Sigma | # B6768-500G | |
DNA ladder | NEB | #N3232L | |
6. DNA isolation and Clean-up Kits | |||
Genomic DNA isolation and purification kit | Promega | #A1120 | |
Plasmid Midi kit | Qiagen | # 12143 | |
QIAquick PCR purification kit | Qiagen | #28104 | |
7. Equipment for PCR, Transformation and Replica-pinning | |||
Thermal cycler | BioRad, iCycler | ||
Agarose gel electrophoresis | BioRad | ||
Electroporator | Bio-Rad GenePulser II | ||
0.2 cm electroporation cuvette | Bio-Rad | ||
42 °C water bath shaker | Innova 3100 | ||
Beckman Coulter TJ-25 centrifuge | Beckman Coulter | ||
32 °C shaker | New Brunswick Scientific, USA | ||
32 °C plate incubator | Fisher Scientific | ||
RoToR-HDA benchtop robot | Singer Instruments | ||
96, 384 and 1,536 pin density pads | Singer Instruments | ||
96 or 384 long pins | Singer Instruments | ||
8. Imaging Equipments | |||
Camera stand | Kaiser | ||
Digital camera, 10 megapixel | Any Vendor | ||
Light boxes, Testrite 16" x 24" units | Testrite | ||
9. Pads or Plates Recycling | |||
10% bleach | Any Vendor | ||
70% ethanol | Any Vendor | ||
Sterile distilled water | Any Vendor | ||
Flow hood | Any Vendor | ||
Ultraviolet lamp | Any Vendor | ||
10. Labware | |||
50 ml polypropylene tubes | Any Vendor | ||
1.5 ml micro-centrifuge tubes | Any Vendor | ||
250 ml conical flaks | VWR | # 29140-045 | |
15 ml sterile culture tubes | Thermo Scientific | # 366052 | |
Cryogenic vials | VWR | # 479-3221 | |
Rectangular Plates | Singer Instruments | ||
96-well and 384-well microtitre plates | Singer Instruments | Nunc | |
Plate roller for sealing multi-well | Sigma | #R1275 | |
plates | ABgene | # AB-0580 | |
Adhesive plate seals | Fisher Scientific | # 13-990-14 | |
-80 °C freezer | Any Vendor |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。