Method Article
A method for analyzing DNA integrity in the cell-free supernatant fraction of urine samples is proposed. The method is suitable for early detection of urological malignancies and has proven accurate for the early diagnosis of bladder cancer.
Хотя присутствие циркулирующих ДНК клеток, свободных в плазме или сыворотке крови было широко показано, что подходящим источником биомаркеров для многих видов рака, некоторые исследования были сосредоточены на потенциальном использовании бесклеточной (УКУ) ДНК мочи. Исходя из гипотезы, что нормальные клетки производят апоптотических высоко фрагментированной ДНК и что раковые клетки выделяют больше ДНК, потенциальная роль целостности ДНК UCF оценивали в качестве раннего диагностического маркера, способного различать между пациентами с простаты или рака мочевого пузыря и здоровых людей.
Анализ по UCF ДНК целостности предлагается на основе четырех количественных реального времени ДЗП четырех последовательностей длиной более 250 п.н.: с-Мус, BCAS1, HER2 и Аr. Последовательности, которые часто имеют повышенное число копий ДНК, в мочевом пузыре и рака простаты были выбраны для анализа, но этот метод является гибким, и эти гены могут быть заменены другими генами Inteотдых. Потенциальной полезности UCF ДНК в качестве источника биомаркеров уже была продемонстрирована для урологических злокачественных опухолей, тем самым проложив путь для дальнейших исследований по характеристике UCF ДНК. Тест целостности ДНК UCF имеет преимущество быть неинвазивным, быстрым и легко выполнить, только несколько миллилитров мочи, необходимых для проведения анализа.
Внеклеточный ДНК может быть обнаружен в крови и моче из-за гибели клеток путем апоптоза или некроза механизмов. Внеклеточный ДНК в крови широко изучены для диагностических и прогностических целях при различных заболеваниях, особенно рака 1. Тем не менее, меньше известно о роли мочевой бесклеточной (УКУ) ДНК. UCF ДНК может происходить от прохождения крови через клубочковой фильтрационной системы или из клеток , которые поступают непосредственно в контакт с этим телом жидкости 2 (например, уротелиальных клеток или клеток предстательной железы). Использование ДНК UCF в качестве источника биомаркеров в основном было исследовано для ранней диагностики почек, мочевого пузыря и рака предстательной железы в связи с высоким процентом UCF ДНК , приходящие непосредственно из клеток мочевого тракта 3,4.
Мало что известно о UCF ДНК и лучшие методы выделения и характеризующие его. Учитывая гипотезу, что опухолевые клетки высвобождают более длинных фрагментов ДНК, чем нормальные клетки, оценкацелостности ДНК бесклеточной изучена в попытке выяснения происхождения ДНК в кровотоке 5. Некоторые исследования показали , что целостность ДНК бесклеточного в крови представляет собой хороший диагностический тест для многих видов рака 6, и та же гипотеза была предложена в связи с мочой 7-9.
В данной статье описывается новый метод анализа целостности UCF ДНК с точки зрения возможного применения обнаружения рака мочевого пузыря и простаты. В частности, целостность UCF фрагментов ДНК больше , чем 250 пар оснований был испытан в 4 -х регионах , известно, что увеличение числа копий ДНК в солидных опухолей, в том числе рака простаты и мочевого пузыря: с-Мус (8q24.21), HER2 (17q12.1 ), BCAS1 (20q13.2) и AR (Xq12) 10-14. Конкретные онкогенов, а не случайные последовательности, были выбраны, чтобы увеличить вероятность нахождения их в бесклеточной фракции онкологических больных. Одним из основных преимуществэтот метод является то, что он является гибким и что другие регионы также могут быть выбраны на основе типа опухоли и характеристик.
Протокол следует рекомендациям Комитета по IRST человека по этике исследований.
Примечание: В этом протоколе, мы выделили ДНК из образцов мочи для проведения анализа на целостность UCF ДНК. LNCAP и MRC клеточные линии были использованы для построения стандартов. Такие методы, как экстракции ДНК, ДНК - количественному (спектрофотометра и ПЦР в реальном времени для контрольного гена, STOX1) и ПЦР в реальном времени для определенных онкогенов были выполнены (рисунок 1).
1. Моча Сбор и обработка
2. Выделение ДНК из мочи супернатанта и клеточных линий
Примечание: Изолировать ДНК из клеточной линии (например, LNCAP для рака простаты или MRC рака мочевого пузыря) с использованием коммерческого набора и следуя инструкциям изготовителя. Выделение ДНК из надосадочной жидкости моча должна быть выполнена с использованием коммерческого протокола, изменен следующим образом:
3. Количественное определение ДНК и разбавление
4. ДНК Integrity Test - ПЦР
5. ДНК Integrity Test - анализ и интерпретация данных
Примечание: Значение UCF ДНК для каждого образца была получена с помощью системы приборостроение обнаружения программного обеспечения в режиме реального времени с использованием стандартного построения кривой для каждой индивидуальной оценки гена ПЦР и с использованием стандартной кривой , интерполяции, как описано ранее , 7-9 (рисунок 2).
Суммарная концентрация свободной ДНК была количественно с помощью спектрофотометрии для всех анализируемых образцов, показывающий диапазон между 1,51 и 138 нг / мкл. Пять контрольных образцов были использованы для воспроизводимости данных: два независимых эксперимента в режиме реального времени были выполнены для с-Мус, HER2, BCAS1, AR и STOX1. Коэффициенты вариации (КВ) Затем были рассчитаны для каждого гена (таблица 2), с хорошей степенью воспроизводимости между двумя независимыми экспериментами (таблица 2).
125 п.н. последовательность STOX1 анализируют , чтобы исключить наличие ингибиторов ПЦР. Если образцы показали усиление STOX1, тест на целостность UCF ДНК проводили. Отсутствие усиления означает, что количество ДНК не было достаточно, чтобы выполнить тест на целостность UCF ДНК, что указывает на необходимость повторить тон анализ с новой коллекцией мочи. Поскольку имеется мало информации об усилении или удалении STOX1 при раке мочевого пузыря и предстательной железы, этот ген может быть использован в качестве управляющей последовательности для этих типов опухолей. И, наконец, оценка целостности UCF ДНК проводили путем сложения значений , полученных для трех онкогенов (рисунок 3).
Использование суммы генов с-Мус, HER2, и BCAS1 был предложен для обнаружения рака мочевого пузыря 9, в то время как с-Мус, АР, и HER2 были предложены для рака простаты 7,8. Наилучшие пороговые значения, определенные для мочевого пузыря и обнаружения рака простаты составляет 0,1 нг / мкл и 0,04 нг / мкл соответственно. Используя эти Пороговые значения, чувствительность 73% и специфичность 84% были получены в диагностике рака мочевого пузыря по сравнению с симптомами лиц, в то время как 58% чувствительность и 44% специфичностьности наблюдались при выявлении рака простаты по сравнению с пациентами с доброкачественными заболеваниями урогенитального тракта 7-9. В заключение, тест на целостность UCF ДНК является гибким, так что гены, используемые в данном исследовании, могут быть заменены другими длинными последовательностями, представляющих интерес, в зависимости от заболевания.
Рисунок 1. Моча Cell-свободной ДНК целостности рабочего процесса и временной шкалой. Рабочий процесс метода делится на различные этапы и времени. Пожалуйста , нажмите здесь , чтобы посмотреть увеличенную версию этой фигуры.
Рисунок 2. Отчет для с-Мус ампликоне анализа. Пример анализа плавления, амплификации участкаИ стандартная кривая представлены для оценки с-Мус. Пожалуйста , нажмите здесь , чтобы посмотреть увеличенную версию этой фигуры.
Рисунок 3. UCF ДНК Integrity Анализ рабочих процессов. Простой рабочий процесс для анализа целостности ДНК UCF сообщается. Пожалуйста , нажмите здесь , чтобы посмотреть увеличенную версию этой фигуры.
Ген | Эталонная последовательность | Грунтовка вперед | Грунтовка обратная | Длина Amplicon (п.н.) | Протокол в реальном масштабе времени |
MYC (с-Мус) (V-Мус Птичий Myelocytomatosis Вирусный онкогенов гомолога, локус 8q24.21) | NG_007161.1 | TGGAGTAGGG ACCGCATATC | CCCAACACCA CGTCCTAAC | 264 | 95 ° С в течение 3 минут, а затем 45 циклов при 94 ° С в течение 40 секунд, 56 ° С в течение 40 секунд и 72 ° С в течение 1 минуты. |
ERBB2 (HER2) (Эрба-В2 рецепторной тирозинкиназы 2, локус 17q12.1) | NG_007503.1 | CCAGGGTGTT CCTCAGTTGT | TCAGTATGGC CTCACCCTTC | 295 | |
BCAS1 (Карцинома молочной железы Усиленный Последовательность 1, локус 20q13.2) | NC_000020 | GGGTCAGAGC TTCCTGTGAG | CGTTGTCCTG AAACAGAGCA | 266 | |
Арканзас (Андрогенных рецепторов, локус Xq12) | NG_009014.2 | AGCCCAGGTT CTCTCCTGAT | TGGCTAGTC CTCAGCTT | 265 | |
STOX1 (Storkhead Box1, локус 10q21.3) | NG_012975.1 | GAAAACAGG GCAGCAAGAAG | CAGACAGCAT GGAGGTGAGA | 125 | 95 ° С в течение 90 секунд, затем 45 циклов при 94 ° С в течение 40 секунд и 54 ° С в течение 1 минуты. |
Таблица 1. Последовательности праймеров и Условия анализа.
Образец | HER2 | РЕЗЮМЕ (%) | BCAS1 | РЕЗЮМЕ (%) | с -MYC | РЕЗЮМЕ (%) | Арканзас | РЕЗЮМЕ (%) | STOX1 | РЕЗЮМЕ (%) | |||||
Repli-Cate 1 * | Repli-Cate 2 * | Repli-Cate 1 * | Repli-Cate 2 * | Repli-Cate 1 * | Repli-Cate 2 * | Repli-Cate 1 * | Repli-Cate 2 * | Repli-Cate 1 * | Repli-Cate 2 * | ||||||
1 | 0.0 | 0.0 | 3.5 | 0,1 | 0,1 | 3.4 | 0,1 | 0,1 | 14,0 | 0,6 | 0,5 | 29,1 | 0,6 | 0. 8 | 4.5 |
2 | 2.6 | 2.7 | 2.3 | 0.0 | 0.0 | 0.0 | 0,9 | 1.5 | 28,6 | 0,1 | 0,1 | 22,0 | 2.6 | 3.0 | 6.1 |
3 | 0,4 | 0,2 | 17,0 | 0,1 | 0,1 | 5.9 | 2.6 | 3.2 | 11,6 | 0.0 | 0.0 | 0.0 | 0,7 | 1.2 | 23,1 |
4 | 0.0 | 0.0 | Небраска | 1.1 | 1,0 | 3.0 | Небраска | 0.0 | Небраска | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Небраска |
5 | 2.5 | 3.1 | 9.8 | 0,1 | 0,1 | 14,0 | Небраска | 0.0 | Небраска | 0,1 | 0.0 | 27,1 | 0.0 | 0.0 | Небраска |
Таблица 2. ПЦР в реальном времени воспроизводимости для каждого гена.
* Результаты представлены как нг / мкл
CV, коэффициент вариации; NE, не оцениваемого
Гены целостности ДНК UCF | Disлегкость | Больные раком (п) | Органы управления (п) | Отрезанные (нг / мкл) | Уровень чувствительности (95% ДИ) | Скорость Специфичность (95% ДИ) | Справка |
MYC HER2 BCAS1 | Рак мочевого пузыря | 52 | 46 симптоматические лиц 32 здоровых людей | 0,1 | 0.73 (0.61-0.85) | 0.83 (0.72-0.94) | Casadio V и др. 2013 9 |
MYC HER2 BCAS1 | Рак простаты | 29 | 25 здоровых людей | 0.04 | 0,79 (.62-0.90) | 0.84 (0.65-0.94) | Casadio V и др. 2013 8 |
с-Мус AR BCAS1 | Рак простаты | 67 | 64 больных с доброкачественными заболеваниями мочеполового тракта | 0.04 | 0.58 (0.46-0.73) | 0.44 (0.30-0.58) | Сальви S и др. 2015 7 |
Таблица 3. Краткое изложение результатов , полученных для ранней диагностики рака простаты и мочевого пузыря Раки.
анализ целостности ДНК UCF представляет собой новый, неинвазивный метод оценки целостности ДНК в моче. В последнее время было предложено для ранней диагностики мочевого пузыря 9 и рака простаты 7,8. Ряд преимуществ и недостатков теста целостности UCF ДНК обсуждаются здесь, вместе с будущими перспективами.
Основным преимуществом такого подхода является то, что он предлагает недорогой, неинвазивный метод и простой протокол для изучения мочи в качестве потенциального источника биомаркеров, требуя только базовые знания в области методов молекулярной биологии. Тест быстро выполнить, и результаты, доступные после 2 дней работы (Рис. 1), легко могут быть интерпретированы без помощи врача. Состоит только из процессов выделения ДНК и 2 в режиме реального времени ДЗП, подход также имеет хорошее соотношение затрат и выгод. С точки зрения точности, целостности ДНК UCF обладает высокой чувствительностью (73%) и специфичность (84%) при выявлениирак мочевого пузыря у пациентов с симптомами 9. Наконец, метод является гибким, а предлагаемые гены могут быть легко заменены другими генами, представляющим интерес, до тех пор, как они длиннее, чем 250 пар оснований.
Тест также имеет ряд ограничений. Во- первых, метод количественного определения ДНК Спектрофотометрическое часто неточны и могут быть заменены другими, более точными, флуорометрических подходы (например, кубитных или PicoGreen). Качество ДНК также довольно бедны, как показали часто низкими отношениями 260/280 и 260/230. Кроме того, в одном из наших исследований, наблюдалась очень низкая специфичность (44%) у пациентов с раком предстательной железы по сравнению с пациентами с доброкачественными заболеваниями мочеполового тракта 7, который, вероятно , является результатом доброкачественных воспалительных некротических клеток разматывать интактную ДНК в обращение. Это очень важный вопрос, потому что у обоих пациентов рака простаты и людей с доброкачественными заболеваниями могут иметь воспалительный компонент в их Urinary клетки. Таким образом, в контексте ранней диагностики рака предстательной железы, результаты анализа в целостности UCF ДНК может ввести в заблуждение.
Целостность ДНК UCF была оценена в 314 образцах мочи у пациентов с раком простаты или рак мочевого пузыря, здоровых и симптоматических лиц, а также больных с доброкачественными заболеваниями мочеполового тракта. Перспективное исследование на большем серии случаев необходимо, чтобы лучше определить роль этого подхода в качестве раннего диагностического маркера рака урогенитального тракта.
Хотя мало публикаций на эту тему ДНК UCF в качестве источника биомаркеров для рака, интерес к этой области растет. В последнее время , Togneri и др. 4 опубликовал интересную статью , в которой ДНК , содержащий клеток , извлеченные из мочи супернатанта больных раком мочевого пузыря показали более высокую опухолевую нагрузку геном , чем клеточной ДНК , выделенной из осадка мочи, предполагая , что изучение бесклеточной фракцииДНК в моче может быть полезным, чтобы охарактеризовать урологических раковых образований.
По нашему опыту, тест на целостность UCF ДНК не доказал, чтобы быть хорошим рано диагностический тест для рака простаты. С другой стороны, он показал потенциал в качестве маркера для ранней диагностики рака мочевого пузыря при использовании в сочетании с обычной мочи цитологии. Подтверждающим исследование на большем проспективное серии случаев в настоящее время планируется.
The authors declare no competing financial interests.
The authors thank Gráinne Tierney and Silvia Bellissimo for their editorial assistance.
Name | Company | Catalog Number | Comments |
QIAamp DNA Mini Kit | Qiagen | 51304 | |
iQ SYBR Green Supermix, 100 x 50 µL rxns, 2.5 mL (2 x 1.25 mL) | Biorad | 1708880 | |
IDT custom DNA oligos | IDT | HPLC purification, 100nMole DNA oligo | |
NanoDrop 1000 Spectrophotometer | Thermo Scientific | Other spectrophotometric methods could also be used to quantify DNA | |
Rotor-Gene 6000 | Corbett | Another Real Time PCR instrument could also be used | |
microcentrifuge | |||
one centrifuge for 50 mL tubes | |||
incubator | |||
-80 °C freezer | |||
-20 °C freezer | |||
10 μL pipette | |||
20 μL pipette | |||
200 μL pipette | |||
1,000 μL pipette | |||
pipette tips (10; 20; 200; 1,000) | |||
1.5 mL tubes | |||
50 mL tubes | |||
15 mL tubes | |||
Rotor-Disc 72 Rotor | Corbett | 9018899 | |
Strip Tubes and Caps, 0.1 mL (250) | Qiagen | 981103 | |
Collection Tubes (2 mL) | Qiagen | 19201 | |
Buffer AL (264 mL) | Qiagen | 19075 | |
Proteinase K (10 mL) | Qiagen | 19133 |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены