Method Article
Stem cell-derived retinal pigment epithelium (RPE) cells may be used for multiple applications including cell-based therapies for retinal degeneration, disease modeling, and drug studies. Here we present a simple protocol for reproducibly deriving RPE from stem cells.
No cure has been discovered for age-related macular degeneration (AMD), the leading cause of vision loss in people over the age of 55. AMD is complex multifactorial disease with an unknown etiology, although it is largely thought to occur due to death or dysfunction of the retinal pigment epithelium (RPE), a monolayer of cells that underlies the retina and provides critical support for photoreceptors. RPE cell replacement strategies may hold great promise for providing therapeutic relief for a large subset of AMD patients, and RPE cells that strongly resemble primary human cells (hRPE) have been generated in multiple independent labs, including our own. In addition, the uses for iPS-RPE are not limited to cell-based therapies, but also have been used to model RPE diseases. These types of studies may not only elucidate the molecular bases of the diseases, but also serve as invaluable tools for developing and testing novel drugs. We present here an optimized protocol for directed differentiation of RPE from stem cells. Adding nicotinamide and either Activin A or IDE-1, a small molecule that mimics its effects, at specific time points, greatly enhances the yield of RPE cells. Using this technique we can derive large numbers of low passage RPE in as early as three months.
The various cell types that occupy the retina are organized in a functional architecture. The photoreceptors in the back of the retina are responsible for converting light into electrical impulses through phototransduction. However, phototransduction cannot occur without the coordinated efforts of other neighboring cell types including Mueller glia and retinal pigment epithelium (RPE) cells. A monolayer of RPE cells partitions the sensory retina from the choriocapillaris, the primary blood supply for photoreceptors, and are ideally situated to control multiple functions important for photoreceptor homeostasis. In fact, the RPE and photoreceptors are so co-dependent they are widely considered to be one single functional unit. (For a review of all the diverse functions of the RPE see Strauss, 20051.) Death or dysfunction of retinal pigment epithelium cells can induce age-related macular degeneration (AMD), the leading cause of permanent vision loss in industrialized countries2-4.
AMD is a multifactorial disease of RPE, photoreceptors, and the choroidal vasculature; risk factors are diverse and include combinations of environmental and genetic influences5,6. Treatments for AMD are very limited, but one promising potential therapy is RPE cell replacement7,8. While the outcomes have been mixed, the transplantation of RPE cells in AMD patients (and in other patients with retinal degeneration) and also in rodent models of retinal degeneration, has the potential to transiently prevent significant photoreceptor atrophy9-23. (The animal model commonly used for these studies are Royal College of Surgeons (RCS) rats, which harbor a mutation in the MerTK gene. This mutation renders RPE cells incapable of phagocytosing photoreceptor outer segments and promotes retinal degeneration24.) While the reported survival rates of implanted RPE in the subretinal space of RCS rats and mice vary greatly, there is potential for them to survive for several months or years9,10,12,20.
RPE cells can be obtained in sufficient numbers for transplantation by deriving them from pluripotent stem cells9-14,25-28. Several independent groups have demonstrated that these cells function in similar ways to their somatic counterparts, and long term studies suggest that they are safe upon implantation in rat and mouse disease models9,10,12,14,19,20,25,29-32. The use of induced pluripotent stem cells instead of embryonic stem cells may be advantageous since ethical issues and immunological challenges associated with allogeneic RPE may be obviated33,34. Another exciting application for iPS technology is disease modeling35. The ability to interrogate large numbers of RPE cells derived from patients with RPE diseases could be invaluable for understanding their molecular bases. This type of study has been performed recently with Best disease patient RPE and could pave the way for similar studies of inherited maculopathies36.
The derivation of RPE from stem cells is a relatively simple process and can be done entirely in xeno-free conditions. The simplest strategy is to derive monolayers of RPE cells spontaneously, however, the yield can be significantly improved using directed differentiation techniques. But these techniques involve the use of exogenous protein factors that can be expensive and often generated in bacteria or other non-human sources10,12,37. In our studies we followed an established protocol10 that utilizes nicotinamide and Activin A, a signaling factor that has been shown to be sufficient for RPE specification38. Here we will demonstrate that the small molecule IDE-1 can adequately replace Activin A, thus reducing costs and alleviating concerns associated with the use of recombinant proteins39. Additionally, we utilize xeno-free serum replacement, and we culture the differentiating RPE cells on a synthetic xeno-free substrate. RPE cells have been shown previously to differentiate very effectively using this approach40.
When differentiated as a monolayer, we visualize pigmented colonies containing RPE cells after as early as five weeks12. Once they reach sufficient size, they can be manually excised and transferred to another dish for expansion. RPE cells are notorious for dedifferentiating with each passage, and the use of anything older than five passages should be avoided (we find that sufficient numbers of cells for characterization and transplantation in animal models can easily be generated after two or three passages). Once fully differentiated, we employ multiple techniques to characterize the cells anatomically and functionally to ensure that they will serve as adequate replacements for diseased RPE. The description of these techniques, and protocol for implanting the iPS-RPE in the subretinal space of rodents, are beyond the scope of this methods paper and have been previously published12,32,41.
While developing standardized protocols for effective derivation of iPS-RPE is clearly important for the clinics, there is also significant preclinical work to still be done in animal models. There are concerns regarding immunogenicity of iPS-derived cells, and multiple different implantation techniques, including implanting cells on artificial substrates, are being explored42,43. For these reasons, we feel that the publication of standardized protocols is beneficial to facilitate both clinical and preclinical studies. Especially if direct comparisons will be done of iPS-RPE cells derived in different labs by different research groups.
1. Directed Diferenciação de Stem RPE derivado-Cell
NOTA: Todos os passos de incubação são realizadas a 37 ° C em 5% de CO 2
2. Isolando pigmentadas Ilhotas
3. Passaging-tronco derivadas de células RPE
Os passos descritos neste manuscrito, como representado na Figura 1, pode ser facilmente utilizada para gerar a partir de células estaminais do EPR como relatado anteriormente 10,12. Após manter as linhas de iPS para várias semanas, as colónias pigmentadas começam a aparecer nas colônias após 5-7 semanas (sete semanas culturas antigas são mostrados na Figura 2A-C). Estas colónias podem continuar a crescer durante semanas como as culturas são mantidas. Uma vez atingida a tamanhos suficientes, como mostrado na Figura 2D-F (8 semanas de idade) culturas, eles podem ser manualmente excisado como ilustrado na Figura 3A. Excisão cuidado para evitar a contaminação com células não-RPE vai facilitar grandemente a geração de culturas RPE suficientemente puros (Figura 3B-C).
Figura 1: Esquema de descrição iPS-RPE derivação . Células estaminais naif são cultivadas em meio de manutenção, até atingir a confluência. No dia 0 media diferenciação (DM) falta bFGF mas contendo nicotinamida é adicionado (DM / NIC). As células são alimentadas diariamente com o meio durante três semanas. No final da semana de três a meios DM é suplementada com a activina A recombinante (DM / NIC / AA) ou IDE-1 (DM / NIC / IDE1) para melhorar a especificação do EPR e as células são alimentadas com o meio, durante duas semanas. Durante este tratamento colônias pigmentadas começam a aparecer, estes ampliar ao longo das próximas semanas e na semana 8 pode ser removido manualmente e transferidas para novas placas de expansão no DM. (Ver Tabela 1 para componentes específicos de mídia) Por favor, clique aqui para ver uma versão maior desta figura.
Figura 2: Activina A umad Pequenas colónias pigmentadas IDE-1 aumentar o rendimento das iPS-RPE. (A) começam a aparecer após sete semanas em cultura espontaneamente entre células não-RPE em uma única folha que é aderente ao fundo de uma placa de 6 poços (alguns estão marcados com setas). (B e C) A suplementação com resultados IDE-1 ou Activina A no aparecimento de colónias mesmo mais pigmentadas (alguns estão marcados com setas na CA) o que demonstra que a suplementação com ou Activina A ou IDE-1 aumenta RPE diferenciação. (DF) Após 8 semanas, os efeitos da suplementação com IDE-1 ou Activina A são ainda mais acentuadas. Ambos os números e tamanhos das ilhotas pigmentados são maiores após a diferenciação dirigida. Barra de escala 5 mm
Figura 3: Expansão e diferenciação terminal deiPS-RPE pigmentadas. (A) Imagem representativa de uma colônia iPS-RPE pigmentada que é grande o suficiente para especial de consumo. As células não-RPE rodeiam a colónia no fundo de uma placa de 6 poços. O contorno azul marca a região que seria extirpado. (B) Imagem de células imaturas iPS-RPE pós-confluentes em cultura após a primeira etapa de expansão. (C) dois meses de idade células iPS-RPE terminalmente diferenciadas. Observe a presença de limites da célula óbvias e níveis homogêneos de pigmentação demonstrando diferenciação avançada. Barras de escala = 100 pm
Nesse artigo, procuramos traçar os passos para gerar de forma eficiente um grande número de culturas puras iPS-RPE. Nós mostramos anteriormente que utilizam este protocolo diferenciação dirigido com Activin A que podemos gerar iPS-RPE que assemelham-se fortemente hRPE baseado em transcriptomics, proteômica, metabolômica e funcionalidade, e que retardar a degeneração da retina quando implantados em ratos RCS 12,31,32 . O processo de geração de iPS-EPR é demorada, trabalhosa, mas não (Figura 1). Uma vez que as culturas atingem a confluência iPS eles devem ser alimentados com meios de diferenciação numa base diária. Nós suplementar os meios com ou Activina A ou menos caro uma pequena molécula IDE-1, e continuar a alimentação durante duas semanas, enquanto monitorando as culturas de colónias pigmentadas iPS-RPE que geralmente aparecem após 5-7 semanas (Figura 2A-C). Uma vez atingida a tamanhos suficientes (Figuras 2D-F e 3A), a colonizaçãoes são removidas e transferidas para novas placas de expansão manualmente. Isto ocorre aproximadamente após 8 semanas e o passo é mais trabalhoso de todo o protocolo.
O aspecto mais desafiador é evitar a contaminação com células não-RPE nas culturas de expansão por acidentalmente coletando células vizinhos indesejados ou em torno das colônias pigmentadas. Dependendo do grau de contaminação, ilhas de células epiteliais pigmentares não pode ser removido manualmente, durante a expansão, embora cada vez que as culturas são tratadas riscos adicionais de introdução de contaminantes bacterianos ou fúngicos são aumentadas. É interessante notar que, em nossa experiência, a iPS-RPE pode realmente "outcompete" um pequeno número de células contaminantes durante as etapas Passaging. Mas é altamente recomendável tomar muito cuidado ao escolher colônias para garantir que eles são tão puros quanto possível, para evitar ter de recorrer a estas etapas. Com a segunda ou terceira passagem, as culturas iPS-RPE são suficientemente puros e suficazes números de células estão disponíveis para a caracterização e o implante.
A técnica descrita aqui certamente não é o único método para derivar células-tronco epiteliais pigmentares derivadas. Na verdade, não é nem o mais fácil, nem o mais rápido. O método mais fácil e mais amplamente é a utilização de diferenciação espontânea. (No entanto, a suplementação com IDE-1, durante duas semanas é barato e aumenta grandemente o rendimento das iPS-RPE.) IPS-RPE também geraram em corpos embrióides de esferas que se diferenciam em células de RPE polarizadas que podem ser forçadas a aderir à superfície de As placas de cultura e expandir como uma monocamada. Células RPE gerar usando este método também têm sido muito vigorosamente caracterizados e assemelham-se fortemente hRPE 27. RPE pode diferenciar de forma extremamente rápida (em apenas 14 dias) a partir de células-tronco, completando a mídia com nicotinamida, IGF1, Noggin, DKK1 e bFGF para convertê-los para neurais destinos progenitoras da retina, e depois adicionar o pro-RPE fatores nicotinamida umnd Activina A 37. RPE também pode ser gerado mesmo mais rapidamente directamente a partir de fibroblastos em cerca de um mês a transdução dos fibroblastos com um conjunto mínimo de factores de transcrição incluindo cMyc, MITF, OTX2, RAX, e 44 CRX. No entanto, embora estes resultados são muito encorajadores o RPE gerado estas duas últimas técnicas ainda não foram rigorosamente caracterizados por implantá-las in vivo. Portanto, sugerimos que o leitor considerar todas as opções RPE derivação cuidado ao decidir que para empregar em seus estudos.
As vantagens da utilização do protocolo delineado aqui são a sua simplicidade e consistentemente altos rendimentos de RPE de muito alta qualidade 31. A suplementação com IDE-1 ao invés de Activin A reduz bastante o custo global e reduz o risco envolvido com o uso de proteínas recombinantes. Uma vez que ainda não está claro se a opção de usar diferentes métodos de diferenciação teráum impacto no produto final, pode ser vantajoso utilizar protocolos padronizados, especialmente se comparações directas entre EPR gerada em diferentes laboratórios será necessário (talvez particularmente no caso de modelagem de doença). Um protocolo simples como esta que requer pouca experiência e reagentes, e que gera alto rendimento de iPS-RPE, pode ser ideal para estas situações.
None of the authors have any commercial disclosures to declare.
We wish to thank the following individuals: Drs. Tim Krohne and Eyal Banin (along with Dr. Mandy Lehmann and David Friedlander) for generous help developing the differentiation protocols. Dr. Felicitas Bucher provided assistance differentiating the RPE cells used in this study. We also acknowledge the National Eye Institute (NEI grants EY11254 and EY021416), California Institute for Regenerative Medicine (CIRM grant TR1-01219), and the Lowy Medical Research Institute (LMRI) for very generous funding for this project.
Name | Company | Catalog Number | Comments |
Corneal knife | Surgipro | SPOI-070 | knife x 1 |
DMEM/F-12, HEPES | Life Technologies | 11330-032 | 500 ml x 4 |
Dulbecco's Phosphate-Buffered Saline, 1X w/out Ca or Mg | VWR | 45000-434 | 500 ml x 6 |
Fetal Bovine Serum, Regular (Heat Inactivated) | VWR | 45000-736 | 500 ml x 1 |
FGF-Basic (AA 10-155) Recombinant Human Protein | Life Technologies | PHG0021 | 100 µg x 1 |
IDE-1 | Stemgent | 04-0026 | 2 mg x 1 |
Knockout DMEM | Life Technologies | 10829-018 | 500 ml x 1 |
KnockOut Serum Replacement | Life Technologies | 10828-028 | 500 ml x 1 |
L-Glutamine 200 mM | Life Technologies | 25030-081 | 100 ml x 1 |
MEM Non-Essential Amino Acids Solution 100X | Life Technologies | 11140-050 | 100 ml x 1 |
Nicotinamide | Sigma-Aldrich | N0636-100G | 100 g x 1 |
Penicillin-Streptomycin (10,000 U/ml) | Life Technologies | 15140-148 | 20 ml x 1 |
Recombinant Human/Murine/Rat Activin A | PeproTech | 120-14E | 10 µg x 2 |
Synthemax-T Surface 6 Well Plates | Corning | 3877 | Case(12) x 1 |
TrypLE-Express Enzyme (1X), no phenol red | Life Technologies | 12604-021 | 500 ml x 1 |
Vacuum Filter/Storage Bottle System, 0.1µm pore, 500ml | Corning | 431475 | Case(12) x 1 |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados