Method Article
Stem cell-derived retinal pigment epithelium (RPE) cells may be used for multiple applications including cell-based therapies for retinal degeneration, disease modeling, and drug studies. Here we present a simple protocol for reproducibly deriving RPE from stem cells.
No cure has been discovered for age-related macular degeneration (AMD), the leading cause of vision loss in people over the age of 55. AMD is complex multifactorial disease with an unknown etiology, although it is largely thought to occur due to death or dysfunction of the retinal pigment epithelium (RPE), a monolayer of cells that underlies the retina and provides critical support for photoreceptors. RPE cell replacement strategies may hold great promise for providing therapeutic relief for a large subset of AMD patients, and RPE cells that strongly resemble primary human cells (hRPE) have been generated in multiple independent labs, including our own. In addition, the uses for iPS-RPE are not limited to cell-based therapies, but also have been used to model RPE diseases. These types of studies may not only elucidate the molecular bases of the diseases, but also serve as invaluable tools for developing and testing novel drugs. We present here an optimized protocol for directed differentiation of RPE from stem cells. Adding nicotinamide and either Activin A or IDE-1, a small molecule that mimics its effects, at specific time points, greatly enhances the yield of RPE cells. Using this technique we can derive large numbers of low passage RPE in as early as three months.
The various cell types that occupy the retina are organized in a functional architecture. The photoreceptors in the back of the retina are responsible for converting light into electrical impulses through phototransduction. However, phototransduction cannot occur without the coordinated efforts of other neighboring cell types including Mueller glia and retinal pigment epithelium (RPE) cells. A monolayer of RPE cells partitions the sensory retina from the choriocapillaris, the primary blood supply for photoreceptors, and are ideally situated to control multiple functions important for photoreceptor homeostasis. In fact, the RPE and photoreceptors are so co-dependent they are widely considered to be one single functional unit. (For a review of all the diverse functions of the RPE see Strauss, 20051.) Death or dysfunction of retinal pigment epithelium cells can induce age-related macular degeneration (AMD), the leading cause of permanent vision loss in industrialized countries2-4.
AMD is a multifactorial disease of RPE, photoreceptors, and the choroidal vasculature; risk factors are diverse and include combinations of environmental and genetic influences5,6. Treatments for AMD are very limited, but one promising potential therapy is RPE cell replacement7,8. While the outcomes have been mixed, the transplantation of RPE cells in AMD patients (and in other patients with retinal degeneration) and also in rodent models of retinal degeneration, has the potential to transiently prevent significant photoreceptor atrophy9-23. (The animal model commonly used for these studies are Royal College of Surgeons (RCS) rats, which harbor a mutation in the MerTK gene. This mutation renders RPE cells incapable of phagocytosing photoreceptor outer segments and promotes retinal degeneration24.) While the reported survival rates of implanted RPE in the subretinal space of RCS rats and mice vary greatly, there is potential for them to survive for several months or years9,10,12,20.
RPE cells can be obtained in sufficient numbers for transplantation by deriving them from pluripotent stem cells9-14,25-28. Several independent groups have demonstrated that these cells function in similar ways to their somatic counterparts, and long term studies suggest that they are safe upon implantation in rat and mouse disease models9,10,12,14,19,20,25,29-32. The use of induced pluripotent stem cells instead of embryonic stem cells may be advantageous since ethical issues and immunological challenges associated with allogeneic RPE may be obviated33,34. Another exciting application for iPS technology is disease modeling35. The ability to interrogate large numbers of RPE cells derived from patients with RPE diseases could be invaluable for understanding their molecular bases. This type of study has been performed recently with Best disease patient RPE and could pave the way for similar studies of inherited maculopathies36.
The derivation of RPE from stem cells is a relatively simple process and can be done entirely in xeno-free conditions. The simplest strategy is to derive monolayers of RPE cells spontaneously, however, the yield can be significantly improved using directed differentiation techniques. But these techniques involve the use of exogenous protein factors that can be expensive and often generated in bacteria or other non-human sources10,12,37. In our studies we followed an established protocol10 that utilizes nicotinamide and Activin A, a signaling factor that has been shown to be sufficient for RPE specification38. Here we will demonstrate that the small molecule IDE-1 can adequately replace Activin A, thus reducing costs and alleviating concerns associated with the use of recombinant proteins39. Additionally, we utilize xeno-free serum replacement, and we culture the differentiating RPE cells on a synthetic xeno-free substrate. RPE cells have been shown previously to differentiate very effectively using this approach40.
When differentiated as a monolayer, we visualize pigmented colonies containing RPE cells after as early as five weeks12. Once they reach sufficient size, they can be manually excised and transferred to another dish for expansion. RPE cells are notorious for dedifferentiating with each passage, and the use of anything older than five passages should be avoided (we find that sufficient numbers of cells for characterization and transplantation in animal models can easily be generated after two or three passages). Once fully differentiated, we employ multiple techniques to characterize the cells anatomically and functionally to ensure that they will serve as adequate replacements for diseased RPE. The description of these techniques, and protocol for implanting the iPS-RPE in the subretinal space of rodents, are beyond the scope of this methods paper and have been previously published12,32,41.
While developing standardized protocols for effective derivation of iPS-RPE is clearly important for the clinics, there is also significant preclinical work to still be done in animal models. There are concerns regarding immunogenicity of iPS-derived cells, and multiple different implantation techniques, including implanting cells on artificial substrates, are being explored42,43. For these reasons, we feel that the publication of standardized protocols is beneficial to facilitate both clinical and preclinical studies. Especially if direct comparisons will be done of iPS-RPE cells derived in different labs by different research groups.
1. إخراج تمايز الخلايا الجذعية المشتقة من خلية RPE
ملاحظة: يتم تنفيذ جميع الخطوات حضانة بها في 37 درجة مئوية في 5٪ CO 2
2. عزل الصباغي الفشوت
3. الركض الخلايا الجذعية المستمدة RPE
الخطوات الموضحة في هذه المخطوطة، كما هو مبين في الشكل رقم 1، ويمكن استخدامها لتوليد بسهولة RPE من الخلايا الجذعية كما ذكرت سابقا 10،12. بعد الحفاظ على خطوط المحفزة لعدة أسابيع، المستعمرات الصباغية تبدأ في الظهور في المستعمرات بعد 5-7 أسابيع (وترد الثقافات القديمة 7 الأسبوع في الشكل 2A-C). ويمكن لهذه المستعمرات تستمر في النمو لعدة أسابيع حيث يتم الحفاظ على الثقافات. مرة واحدة تصل إلى أحجام كافية، كما هو مبين في الشكل 2D-F (8 الاسبوع الثقافات القديمة)، ويمكن رفعه يدويا كما هو موضح في الشكل 3A. الختان الحذر لتجنب التلوث مع الخلايا غير RPE-سيسهل كثيرا على جيل من الثقافات RPE نقية بما فيه الكفاية (الشكل 3B-C).
الشكل 1: التي تصور تخطيطي IPS-RPE الاشتقاق . الخلايا الجذعية هي ساذجة مثقف في وسائل الإعلام الصيانة حتى تصل confluency. في اليوم 0 وسائل الإعلام التمايز (DM) تفتقر bFGF ولكن يضاف تحتوي على نيكوتيناميد (DM / NIC). ويتم تغذية الخلايا يوميا مع هذه الوسائط لمدة ثلاثة أسابيع. في نهاية الأسبوع ثلاثة وتستكمل وسائل الإعلام DM إما المؤتلف Activin ألف (DM / NIC / AA) أو IDE-1 (DM / NIC / IDE1) لتعزيز RPE مواصفات ويتم تغذية الخلايا مع هذه الوسائط لمدة أسبوعين. خلال هذا العلاج المستعمرات الصباغية تبدأ في الظهور، وهذه تكبير خلال الأسابيع القليلة المقبلة، وبحلول الاسبوع 8 يمكن إزالتها يدويا وتحويلها إلى لوحات جديدة للتوسع في DM. (انظر الجدول رقم 1 لمكونات وسائل الاعلام الخاصة) الرجاء انقر هنا لمشاهدة نسخة أكبر من هذا الرقم.
الشكل 2: Activin A لد المستعمرات المصطبغة الصغيرة IDE-1 تعزيز العائد من IPS-RPE. (A) تبدأ في الظهور بعد سبعة أسابيع في الثقافة بشكل عفوي بين الخلايا غير RPE في ورقة واحدة وهذا هو تمسكا الجزء السفلي من لوحة 6 جيدا (بعض يتم وضع علامة مع السهام). (B و C) مكملات مع النتائج IDE-1 أو Activin ألف في ظهور المستعمرات حتى أكثر المصطبغة (يتم وضع علامة مع بعض السهام في AC) مما يدل على أن مكملات مع أي Activin A أو IDE-1 يعزز RPE التمايز. (DF) بعد 8 أسابيع من آثار مكملات مع IDE-1 أو Activin A، بل هي أكثر وضوحا. كل من الأرقام والأحجام من الجزر الصباغية هي أكبر بعد التمايز توجيهات. شريط مقياس = 5 ملم
الشكل 3: توسيع والتمايز النهائي منIPS-RPE مصطبغة. (A) صورة الممثل من المصطبغة مستعمرة IPS-RPE التي هي كبيرة بما يكفي لالمكوس. خلايا غير RPE تحيط مستعمرة في الجزء السفلي من لوحة 6 جيدا. ويمثل المخطط الأزرق المنطقة التي سيتم رفعه. (ب) صورة من خلايا غير ناضجة IPS-RPE بعد متكدسة في الثقافة بعد خطوة التوسع الأولى. (C) خلايا الجذع-RPE متباينة عضال اثنين من الشهر القديمة. لاحظ وجود حدود واضحة خلية ومستويات متجانسة من تصبغ يدل التمايز المتقدم. الحانات النطاق = 100 ميكرومتر
في هذه المخطوطة نحن الخطوط العريضة الخطوات لتوليد بكفاءة أعداد كبيرة من الذهب الخالص الثقافات IPS-RPE. لقد أظهرنا سابقا باستخدام هذا البروتوكول التمايز الموجهة مع Activin A أننا يمكن أن تولد IPS-RPE التي تشبه بقوة hRPE على أساس transcriptomics، البروتينات، الايض، وظائف، وأنها تؤخر تنكس الشبكية عند زرعها في الفئران RCS 12،31،32 . عملية توليد IPS-RPE هي مضيعة للوقت، ولكن ليس شاقة (الشكل 1). وبمجرد أن الثقافات الجذع تصل confluency يجب أن يكون الطعام مع وسائل الإعلام التمايز على أساس يومي. نحن استكمال وسائل الإعلام مع أي Activin A أو أقل تكلفة جزيء صغير IDE-1، ومواصلة الرضاعة لمدة أسبوعين في حين رصد الثقافات لالمصطبغة المستعمرات IPS-RPE التي تظهر عادة بعد 5-7 أسابيع (الشكل 2A-C). مرة واحدة تصل إلى أحجام كافية (أرقام 2D-F و3A)، وcoloniتتم إزالة يدويا وفاق وتحويلها إلى لوحات جديدة للتوسع. يحدث هذا تقريبا بعد 8 أسابيع وهي الخطوة الأكثر شاقة للبروتوكول بأكمله.
الجانب الأكثر تحديا هو تجنب التلوث مع الخلايا غير RPE في الثقافات التوسع من خلال جمع بطريق الخطأ خلايا المجاورة غير المرغوب فيها في أو حول المستعمرات المصطبغة. اعتمادا على درجة من التلوث، والجزر من خلايا غير RPE-يمكن إزالتها يدويا أثناء التوسع، على الرغم من أن في كل مرة يتم التعامل مع الثقافات مخاطر إضافية لإدخال الملوثات البكتيرية أو الفطرية وزيادة. ومن الجدير بالذكر أنه في تجربتنا IPS-RPE يمكن في الواقع "تكومبيتي" عدد صغير من الخلايا تلويث خلال الخطوات الركض. ولكن نحن نوصي بشدة اتخاذ الحذر الشديد عند اختيار المستعمرات لضمان أن تكون نقية بقدر الإمكان لتجنب الاضطرار إلى اللجوء إلى هذه الخطوات. قبل مرور الثاني أو الثالث على الثقافات IPS-RPE هي محض وsuffi بما فيه الكفايةتتوفر لتوصيف وغرس أرقام cient من الخلايا.
تقنية ذكرت هنا هي بالتأكيد ليست الطريقة الوحيدة لاشتقاق الخلايا الجذعية المستمدة RPE. في واقع الأمر ليست أسهل ولا أسرع. طريقة أسهل وأكثر على نطاق واسع هو استخدام التمايز عفوية. (ومع ذلك، مكملات مع IDE-1 لمدة أسبوعين غير مكلفة ويزيد كثيرا من محصول IPS-RPE.) قد ولدت IPS-RPE أيضا في الهيئات مضغي الشكل أن تفرق في مجالات الخلايا RPE الاستقطاب التي يمكن أن أجبروا على الانضمام إلى سطح لوحات الثقافة وتتوسع كما أحادي الطبقة. الخلايا RPE تولد باستخدام هذه الطريقة تم أيضا تتميز بقوة جدا وتشبه بقوة hRPE 27. RPE يمكن التفريق للغاية بسرعة (في 14 يوما فقط) من الخلايا الجذعية من خلال استكمال وسائل الإعلام مع نيكوتيناميد، IGF1، رأس، Dkk1، وbFGF لتحويلها إلى العصبية مصائر السلف في شبكية العين، ثم إضافة في وقت لاحق المؤيدة للRPE العوامل نيكوتيناميد لالثانية Activin A 37. ويمكن أيضا أن تتولد RPE أكثر بسرعة مباشرة من الخلايا الليفية في ما يقرب من شهر واحد من قبل transducing الخلايا الليفية مع مجموعة صغيرة من عوامل النسخ بما في ذلك cMYC، MITF، OTX2، RAX، وCRX 44. ومع ذلك، في حين أن هذه النتائج مشجعة جدا RPE ولدت هذه التقنيات الماضيين لم يتم تتميز بدقة من قبل زرعها في الجسم الحي. ولذلك، فإننا نقترح أن القارئ النظر في جميع الخيارات RPE الاشتقاق بعناية عند البت فيها لتوظيف في دراستهم.
مزايا استخدام بروتوكول المذكورة هنا هي بساطته وعوائد عالية على الدوام ذات جودة عالية جدا RPE 31. مكملات مع IDE-1 بدلا من Activin ويقلل كثيرا من التكلفة الإجمالية ويقلل من المخاطر التي ينطوي عليها مع استخدام البروتينات المؤتلف. لأنه ليس من الواضح حتى الآن إذا كان الخيار لاستخدام أساليب التفريق مختلفة سيكون لهالها تأثير على المنتج النهائي، ويمكن أن يكون من المفيد للاستفادة من بروتوكولات موحدة، لا سيما إذا مقارنات مباشرة بين RPE ولدت في مختبرات مختلفة سيكون ضروريا (وربما لا سيما في حالة النمذجة المرض). بروتوكول بسيط مثل هذا واحد الذي يتطلب القليل الخبرة والكواشف، والذي يولد عالية الغلة من IPS-RPE، قد يكون مثاليا لهذه الحالات.
None of the authors have any commercial disclosures to declare.
We wish to thank the following individuals: Drs. Tim Krohne and Eyal Banin (along with Dr. Mandy Lehmann and David Friedlander) for generous help developing the differentiation protocols. Dr. Felicitas Bucher provided assistance differentiating the RPE cells used in this study. We also acknowledge the National Eye Institute (NEI grants EY11254 and EY021416), California Institute for Regenerative Medicine (CIRM grant TR1-01219), and the Lowy Medical Research Institute (LMRI) for very generous funding for this project.
Name | Company | Catalog Number | Comments |
Corneal knife | Surgipro | SPOI-070 | knife x 1 |
DMEM/F-12, HEPES | Life Technologies | 11330-032 | 500 ml x 4 |
Dulbecco's Phosphate-Buffered Saline, 1X w/out Ca or Mg | VWR | 45000-434 | 500 ml x 6 |
Fetal Bovine Serum, Regular (Heat Inactivated) | VWR | 45000-736 | 500 ml x 1 |
FGF-Basic (AA 10-155) Recombinant Human Protein | Life Technologies | PHG0021 | 100 µg x 1 |
IDE-1 | Stemgent | 04-0026 | 2 mg x 1 |
Knockout DMEM | Life Technologies | 10829-018 | 500 ml x 1 |
KnockOut Serum Replacement | Life Technologies | 10828-028 | 500 ml x 1 |
L-Glutamine 200 mM | Life Technologies | 25030-081 | 100 ml x 1 |
MEM Non-Essential Amino Acids Solution 100X | Life Technologies | 11140-050 | 100 ml x 1 |
Nicotinamide | Sigma-Aldrich | N0636-100G | 100 g x 1 |
Penicillin-Streptomycin (10,000 U/ml) | Life Technologies | 15140-148 | 20 ml x 1 |
Recombinant Human/Murine/Rat Activin A | PeproTech | 120-14E | 10 µg x 2 |
Synthemax-T Surface 6 Well Plates | Corning | 3877 | Case(12) x 1 |
TrypLE-Express Enzyme (1X), no phenol red | Life Technologies | 12604-021 | 500 ml x 1 |
Vacuum Filter/Storage Bottle System, 0.1µm pore, 500ml | Corning | 431475 | Case(12) x 1 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved