ソース: 研究室の博士アナ ・ j ・ ガルシア-Sáez-テュービンゲン大学
興味のほとんどのサンプルは、多くの異なるコンポーネントの混合物です。試料の調製、分析プロセスの重要なステップは、干渉分析に影響を与える可能性がありますそれを削除します。など、分離技術の開発は学界だけでなくだけでなく、業界の重要な試みです。
混合物を分離する方法の 1 つは、その溶解性のプロパティを使用します。この短い論文で水溶液を取り扱います。興味の化合物の溶解度は、ソリューション、pH (2) および (3) 温度の (1) イオン強さによって決まります。これらの 3 つの要素を自在に操り、目的の化合物をサンプルの残りの部分から削除する化合物が水溶性ではない条件を使用できます。1
パラメーターの数は、図 1に示すように、溶解性を削減し、固体としてのソリューションから削除することによって不純物から目的の標本を分離する使用ことができます。 まず、溶液のイオン強度を変更すると、物質の溶解度が変更できます。 余分な塩 (塩析とも呼ばれます) の添加、または関心の化合物の少ない水溶性種を形成する対イオンの追加が伴います。2
図 1。容解性の平衡温度、pH、イオン強度を受けます。興味 (黄色) の化合物は、溶媒に対する溶解性を変更することによって (赤) の不純物から分離されます。
溶液の pH を変更すると、化合物の純充満が変更可能性があります。特定の pH で純充満 (等電点とも呼ばれます) ゼロになるし、化合物が最終的に固体を形成、水に難溶になります。温度は、高温固体の溶解度が増加また、溶解度に影響を与えます。
立体形成のレートは、相対的な純度 (図 2) を決定します。一般に、降水量が急速なペースで固体の形成を指しますそれによって生産いくつかの不純物を含む非晶質試料内に閉じ込められました。これは塩析と pH 変化により誘起プロセスで一般的です。このプロセスは遅く、不純物、敷地内でトラップされない、比較的純粋な固体が生成されます。再結晶にこの手法を採用します。このプロセスで化合物は高温で飽和点にだけ十分な溶媒に溶解しました。この飽和ソリューション後ゆっくりとクールダウンに実行されます。ソリューションを冷却すると、コンポーネントの溶解度の減少と溶解度を超える化合物を形成する非晶質の固体ではなく秩序固体 (結晶として知られている)。溶液中の不純物は閉じ込められてしまうは、閉じ込められている前に、遅いプロセスは固体の表面でこれらの不純物の除去することができますありません。1
図 2。沈殿物と結晶の違い。
固体が形成 (結晶としてかどうかまたは沈殿物) 混合物の残りの部分から分離する必要があります。ろ過はそれらを分離する方法の 1 つであります。これは、固体の物質が、ソリューションではなく通路を選択的に抑制する多孔質材料を採用しています。
遠心分離は混合物の残りの部分から沈殿物を分離する別の方法です。遠心分離は、その密度に基づく混合物を分離するのに求心性加速を使用します。ソリッド以降は水溶液、容器の底に固体の堆積物よりも密度が高い。固体はペレットと水溶液、清とも呼ばれます。上清はデカントしすることができます。 またはピペットやスポイトを使用して抽出します。結晶は壊れやすい、ソリューションからそれらを分離する遠心分離を採用してよくないです。
このビデオは、(塩析、pH の変化と再結晶) 固体の形成とろ過または遠心分離による水溶液からの後続の除去で化合物を分離するさまざまな方法をカバーします。
1. CaCO3の沈殿物
2. ミルク蛋白質の沈殿物
3. KCl の再結晶
容解性の平衡は、多くの精製プロセスで採用されています。 カルシウムは、炭酸ナトリウムを使用して水から削除できます。3炭酸カルシウムの溶解度積 (K ・sp) は、4.8 × 10-9です。CaCl2 1 M と 1 M Na2CO3の混合 CaCO3沈殿物が生成されます。沈殿物は、遠心分離を使用して、ソリューションの残りの部分から分離されました。
カゼイン (牛乳の主要蛋白質) は pH 4.6 で等電点をこの pH で不溶性の凝乳を形成します。凝乳し、ろ過または遠心分離 (図 3 a) のいずれかを使用して、ソリューション (また呼ばれる乳清) の残りの部分から分離されました。豆腐は、豆腐のリン脂質とも閉じ込められた他の水溶性化合物を削除し、エタノールで洗浄しました。遠心分離はろ過より蛋白質の損失を防止するフィルター ペーパーに付いたいくつかの蛋白質があったので。分離した成分を沈殿物の反作用がホエーからカゼインのほとんどを分離を示す SDS ページ (図 3 b) を使用して行った。グロブリンなど、他の牛乳蛋白質のカゼインとともに沈殿物します。これ以降の手順は、カゼイン蛋白質の残りの部分から分離するため適用されるかもしれません。
降水量は、しかし、それはまたマトリックス内のいくつかの不純物をトラップできる、固体からほとんど不純物を削除します。再結晶は固体 (図 4) をさらに浄化するためによく使用されます。この実験では固体は固体が非常に水溶性ではない溶剤でまちまちだった。混合物の温度は溶媒の沸点に育てられたと熱い溶媒を飽和させるのに十分な固体が追加されます。他の不溶解性の不純物は、濾過のステップを介して削除でした。高温の溶液は、徐々 に室温まで冷却し、冷却冷蔵庫/コールド ルーム/氷浴でさらに。ゆっくりとしたプロセスは非晶質の沈殿物ではなく結晶になった水溶性の不純物は結晶格子に反映されていなかった、結果結晶された原油の沈殿物より比較的もっと純粋です。結晶は、空気 (または真空) を乾燥するろ過、左を使用して収穫しました。
図 3。ミルク蛋白質の沈殿物。(A)ミルク蛋白質の隔離のステップごとの写真。(B) SDS、さまざまなサンプルのページ
図 4。KCl の結晶。
沈殿生成反応は、多くのサンプルの準備プロセスに適用されます。前に述べたように、彼らは塩またはその容解性の平衡によって特定のイオンを削除する使用できます。彼らは、混合物からタンパク質などの生体分子を削除する使用できます。
再結晶がよく、さらに固形物を浄化するために採用します。このプロセスは、固体内で閉じ込められた不純物を削除します。とりわけ、再結晶塩と有機分子を浄化するために使用できます。
遠心分離やろ過技術は、溶媒から非水溶性成分を分離するほとんどのサンプル準備要求に適用されます。ろ過は、溶剤から純粋な結晶化化合物を分離する有機化学で頻繁に使用されます。また、天然物有機化学や分析化学で固液抽出後使用されます。遠心分離がよく使用されます別の密度のようにとの混合物を分離するここで乳成分と沈殿した塩の分離に適用。
生化学、タンパク質、脂質、DNA の隔離などほとんどのプロセスは沈殿生成反応のサンプルを浄化するために遠心分離やろ過の方法。これらのプロセスのほとんどは、商業キットに完全に標準化されている、そこはまだ最適化のための部屋の多く異なる生体分子が異なる条件を必要と。
スキップ先...
このコレクションのビデオ:
Now Playing
Organic Chemistry
157.2K 閲覧数
Organic Chemistry
34.1K 閲覧数
Organic Chemistry
166.3K 閲覧数
Organic Chemistry
70.3K 閲覧数
Organic Chemistry
41.5K 閲覧数
Organic Chemistry
55.9K 閲覧数
Organic Chemistry
79.1K 閲覧数
Organic Chemistry
705.3K 閲覧数
Organic Chemistry
237.1K 閲覧数
Organic Chemistry
212.3K 閲覧数
Organic Chemistry
332.8K 閲覧数
Organic Chemistry
32.3K 閲覧数
Organic Chemistry
288.4K 閲覧数
Organic Chemistry
358.4K 閲覧数
Organic Chemistry
246.7K 閲覧数
Copyright © 2023 MyJoVE Corporation. All rights reserved