収差補正走査透過電子顕微鏡を使用して、2 つの広く使われている電子線レジストに 1 桁台のナノメートル パターンを定義する: ポリ (メチルメタクリ レート) と水素シルセスキオキサン。レジスト パターン選択のターゲット材料打ち上げ、エッチング、プラズマを使用して 1 桁台のナノメートル忠実に再現可能し、有機金属錯体による浸透に抵抗します。
電子ビーム露光技術を用いた従来の拡張に抵抗し、パターン転写プロセス露出ツールとして収差補正走査透過電子顕微鏡を用いて 1 桁台のナノメートル寸法を示します。ここでは、提案する 2 つの広く使われている電子線レジストの 1 桁台のナノメートル パターニングの結果: ポリ (メチルメタクリ レート) と水素シルセスキオキサン。メソッドは、ポリ (メタクリル酸メチル) のサブ 5 ナノメートル機能と水素シルセスキオキサンのサブ 10 ナノメートルの分解能を実現します。金属のリフトオフを使用して選択のターゲット材料へのこれらのパターンの忠実度の高い転送を実行できる、プラズマ エッチング、および有機金属錯体を浸透に抵抗します。
この原稿で示されるプロトコルがポリ (メタクリル酸メチル) (PMMA) で 1 桁台のナノメートルの分解能を持つパターンを定義するためのガイダンスを提供しで使用される 2 つの共通電子線レジストを水素シルセスキオキサン (HSQ)高分解能電子線リソグラフィーによるパターニングします。我々 は、電子ビームを制御するため、パターン ・ ジェネレーターと露出ツールとして、収差補正走査透過電子顕微鏡 (STEM) を使用してこれらの結果を達成します。レジストの暴露の後、様々 なターゲット材料1、1 桁台のナノメートルの分解能で新規デバイスの作製を可能にするナノスケール パターンを転送できます。
前の研究は、電子線リソグラフィー (EBL) はパターンを定義することができる示されているレジストでサブ 10 nm の寸法と材料スケール2,3,4,5,6。ただし、寸法約 4 の nm、これらのデモが必要の使用など標準手順支援構造7または自己を開発するための長い露光時間に抵抗する8。他のナノパターニング技術電子ビーム誘起堆積9リソグラフィ10,11, 走査プローブなど証明されているサブ 4 nm の分解能を達成することができるこれらは大幅に必要がEBL に比べて露出時間が長く。
モダンな専用 EBL システム数ナノメートル (2-10 nm)、サブ 10 nm の分解能を持つ定義パターンは非常に困難のスポット サイズで電子ビームを生成します。対照的に、我々 のプロトコルは、オングストロームの長さスケールでの材料解析の高度に最適化された計測器は、収差補正 STEM を用いた EBL を実装します。この違いは、単一ナノメートル分解能1記録破りのリトグラフ特徴の定期的パターンをことができます。状態の-最新鋭中、商業収差補正幹システム コスト数百万ドルの範囲で、彼らはいくつかの国内ユーザー設備で使用可能なコストをかけずに身近なものです。
1. 試料のレジスト塗布
注: この作品で 1 桁台のナノメートルの分解能を持つパターンは PMMA (陽性とネガ) で定義され、膜抵抗、スピン キャストである罪xまたは SiO2市販 TEM windows (約 50 μ x 50 μ m) に5 までの厚さの膜を 50 nm nm。1 つまたは複数の TEM windows 処理フレーム (100 μ m 厚) 直径 3 mm シリコンで製造されています。この原稿の中では、TEM チップとしてユニット全体と TEM ウィンドウとして電子ビームの透明な膜を参照します。
図 1: 回転型レジスト用チップ ホルダーを TEM 。TEM チップは表面積の接触を減少させる 2 つのエッジにのみシリコン ホルダーに接続されているし、したがって、接着力に注意してください。この図の拡大版を表示するのにはここをクリックしてください。
2. スピン コート パラメーター PMMA (正と負の調子) および膜レジスト
注: それは小さい、通常レジスト キャストされます (例えばSiO2膜の Si 膜)、その他の薄い層の測定を複雑にするので、膜厚は TEM チップに直接測定されません。代わりに、抵抗する厚さはフィルムから反射測定がバルク Si サンプルのキャストを使用して校正の回転速度によって決定されます。反射の結果によって確証された、通常より 20% の精度で崩壊した構造物の幹のトップダウンの画像。
レジスト | 回転速度 (g) x | 映画 厚さ (nm) | ベーキング温度 (° C) | 焼成時間 (分) |
ポジ型 PMMA | 60 | 30 | 200、 | 2、 |
ネガ型 PMMA | 60 | 15 | 200、 | 2、 |
HSQ | 107 | 10 | 不要b | 不要b |
参照してください Ref.12;参考文献 13 bを参照 |
表 1: 抵抗スピン コーティングやパラメーターを焼くします。G x でのスピン速度の単位では、直径 3 mm の TEM チップを検討してください。ベーキングは、PMMA のホット プレートで実行されます。HSQ13のベーキングは必要ありません。HSQ レジストは、回転前に室温にウォーム アップする必要があるので、冷蔵保存されます。
3. 茎のサンプルをロード、ウィンドウ座標をマップし、中心に高解像度を実行
図 2: ウィンドウ膜の TEM の回折像。(A)フォーカスが聖痕のクェイサー画像。このイメージの収差補正設定は密接に等間隔回折縞によって証明されるように最適ではありません。(B)露出対応の非 stigmated イメージは、滑らかな高原の回折パターンを示します。この図の拡大版を表示するのにはここをクリックしてください。
4. パターン発電機システムを搭載した収差補正 STEM を用いたパターンを公開します。
メモ: この作業で使用する収差補正 STEM は、コンピューター支援設計 (CAD) ソフトウェアを使用して定義されているパターンを公開する電子ビーム位置を制御するパターン発電システム (PGS) が装備されています。線量は露出ポイント (ステップ サイズ) とポイントごとの露出時間の間隔を定義することによって制御されます。表 2は、このプロトコルで使われる露光パラメーターをまとめたものです。「連続モード」で TEM ウィンドウ中央パターンが公開されているこの作品で使用されている幹にはにビーム ブランクが含まれていないので。前と後、PGS は、位置パターン エリアから離れて視野 (FOV) 内の任意のユーザー定義の時点でビームを好ましく。このプロトコルでは右上、視野の右下の角として用いて初期および最終のビーム位置それぞれ。
レジスト | ドット露出 | ライン露出 | 露出エリア | ||
線量 (fC/ドット) | ステップ サイズ (nm) | 線量 (nC/cm) | ステップ サイズ (nm) | 線量 (微/cm2) | |
ポジ PMMA | 10-100 | 0.5 | 2-8 | 0.5 | 2,000 |
否定的な口調 PMMA | 50-500 | 0.5 | 20-40 | 0.5 | 50,000-80,000 |
HSQ | 10-100 | 0.5 | 10-20 | 0.5 | 20,000-30,000 |
表 2: 抵抗する PMMA (正と負の調子) および膜の露出パラメーター 。最適な線量値特定のパターン設計に依存し、フィーチャーの寸法を対象としたので、表示される値は。
5. 開発と臨界点乾燥に抵抗します。
注: 開発プロセスは使用されるレジストに依存します。5.1、5.2、5.3 の手順はそれぞれ、ポジ型 PMMA、ネガ型 PMMA、および HSQ、開発プロセスを説明します。しかし、すべては、同じ最終臨界点乾燥プロセスは、このプロトコルで作製したパターンの高アスペクト比パターン崩壊を回避する必要がある共有を抵抗します。臨界点乾燥 (CPD) は、水と混和性である作動流体として液体 CO2を使用します。その結果、サンプル脱水 (ステップ 5.4 5.7) ACS 試薬グレード イソプロピル アルコール (IPA) を使用する必要。
図 3: CPD 標準 2"ウェハ ホルダーでチップを TEM を脱水のため社内のソリューション。(A)小穴をもつ特別な 2「Si 基板上 TEM チップの回路図側面図は液体フローを許可する中心部 (直径約 500 μ m) の掘削。ウェハは、CPD 標準 2"ウェハ ホルダー CPD システムの製造元によって提供されるに収まります。(B) 2 番目の特別な Si ウエハを囲む CPD プロセス中に乱流を減らす TEM チップ。A と B、CPD ウェハ ホルダーは ACS 試薬グレード IPA に没頭。この図の拡大版を表示するのにはここをクリックしてください。
図 4は、ポジ型 PMMA (レジスト開発後に露出した領域から削除) とネガ型 PMMA (レジスト非公開領域から削除) リソグラフィ パターンを示します。TEM windows から成っていたポジ PMMA 用約 30 nm 厚 PMMA レジスト (15 nm 厚ネガ型 PMMA の) スピン 5 nm 厚罪x膜をキャストします。金属薄膜 (10 nm AuPd 以上 5 nm Ti) 幹イメージ投射の間のコントラストを高めるためポジ PMMA の開発後に堆積しました。ポジ型 PMMA の平均最小分離機能は 2.5 ± 0.7 nm (図 4、4 D)、最小ピッチ パターンは 17.5 nm (図 4 階)。ネガ型 PMMA の平均最小分離機能は 1.7 ± 0.5 nm (図 4)、最小ピッチ パターンは 10.7 nm (図 4 j)。
図 4: 収差補正電子線描画装置の正と負の-トーン PMMA 。(10 の薄膜 nm AuPd 以上 5 Ti は、この図に示すすべてポジ PMMA パターン上に形成された nm です)。(A)ポジ PMMA の任意パターンの SEM 像。(B)ネガ型 PMMA の任意パターンの TEM 像。(C, D)最小の SEM 画像パターン平均孔径 2.5 ± 0.7 nm でのポジ型 PMMA の穴。(E, F)21.5 のピッチを肯定的なトーンを含んだ pmma 材の定義穴アレイの SEM 画像 nm (E) と 17.5 nm (F)。(G, H)ネガ型メタクリル樹脂 20 nm ピッチと平均柱の直径 1.7 ± 0.5 nm (G) と 1.8 ± 0.5 nm (H) の柱配列の TEM 画像。(I, J)ネガ型 PMMA の TEM 像柱それぞれ 15.2 10.7 nm ピッチの配列です。すべてのスケール バーが 40 nm。この図は、Manfrinato、V.R.、スタイン、再現されています, 張、L.、ナム、C. Y.、イエーガー、ブラック、C.T. Aberration-Corrected 電子ビーム露光 1 ナノメートルで、E.A、Stach キロ。ナノ Lett 。17 (8) 4562-4567 (2017 年)。この図の拡大版を表示するのにはここをクリックしてください。
図 5膜レジストで定義されたパターンが表示されます。HSQ リソグラフィに使用される TEM ウィンドウは約 10 nm 厚膜レジスト スピン キャスト 27 nm 厚 Si 膜から成っています。露出とレジスト開発、3-4 ウィンドウの HSQ 無料領域 (非公開領域) で極薄 Si 層の nm は誘導によって削除された後結合プラズマ (ICP) エッチングの室圧 50 sccm HBr と 20 sccm Cl2ガスの混合物を使用して10 mT (バイアスや ICP 60 W や 250 W、それぞれ)。図 5 aは、短い垂直線の 4 つの行で構成されます。2 つの行は線の用量でさらされた上に歩んだ 120 nC/cm (これらのライン幅 0 nm 設計) 2 から指数関数的に.下の 2 行は、60,000 微/cm2 (5 nm 幅と 200 nm の長い設計長方形) に 3,000 から指数関数的に歩んだ地域用量でさらされました。図 5 bは、図 5 aの一番下の行の中心領域の拡大画像です。左端の 2 つ、4 つのセンター、右端の 4 行は、それぞれ 23,300、27,300、32,000 微/cm2の面積線量にさらされました。4 中心線の 7 の平均測定幅あります nm。
図 5: HSQ レジストの収差補正電子ビームリソグラフィ。(この図で使用する TEM ウィンドウだった 27 nm 厚のシリコン製。HSQ 開発後誘導結合プラズマ エッチングに使用された HSQ によってカバーされていない地域から 3-4 nm の Si を削除します。)(A)垂直線の 4 つの行の TEM 像は、120 の nC/cm (上部の 2 行) と 3,000 に 60,000 微/cm2 (最後の 2 行) に 2 から指数関数的に様々 な用量で公開。ビーム ステップ サイズは 0.5 nm のすべての行。(B) (A) の下の行の中心地の TEM 像を高倍率。中心に 4 行のグループは、平均を持っている 7 の幅を測定した nm 27,300 微/cm2の面積線量にさらされていた。この図の拡大版を表示するのにはここをクリックしてください。
プロトコルの最も重要なステップは電子ビーム露光前に焦点を当ててください。これ最高解像度パターンを達成するために必要です。複数のエクスポー ジャーを (例えばときに、複数のウィンドウがあり、それぞれがパターン化されている TEM チップ) を実行すると、露出エリアからほとんどで 5 μ m の距離で各露出の前にビームの焦点を合わせることが重要です。プロトコルにも前に、かどうかいくつかのボケが発生パターン、たとえばための定量を可能にするパターン領域 (上部と下部コーナー) の 2 つの極度な位置で露出後、ビーム フォーカスを確認する手順が含まれています、膜パターニング地区ローカルで傾いています。
このプロトコルの別の重要なステップは乾燥する臨界点乾燥 (CPD) を使用して露出を開発後サンプル レジスト パターン。この手順を行わないパターンはよく高アスペクト比パターンの構造 (すなわち、パターン化されたレジスト横寸法の厚さより小さい) のため倒れます。ほとんどの CPD システム供給標準 2"ウェハ ホルダーです。ただし、TEM チップが非常に小さいパターンの構造が非常に繊細なのでより大きいサンプルのために設計者に置かれた CPD プロセス中には破損があります。図 3は、CPD の TEM チップ標準ウェーハ ホルダーを使用しての社内ソリューションを示しています。センターでフローを有効にする穴と、2 つのウェーハは、TEM チップを囲み、CPD プロセス中に乱流からそれを保護します。
最適なレジスト膜厚の測定は、競合する要件のバランスを取るしようとします。一方、それは最高の解像度を達成するために、パターンの崩壊を避けるためにできるだけ薄くする必要がありますが、その一方で、それはリフトオフなどエッチング パターン転送アプリケーションに十分な厚さにする必要があります。このプロトコルを使用して、1 %hsq、市販の最も低い希釈であるし、(希釈 HSQ はしばしば部分的な架橋につながる経験ショー) ラボでさらに希釈がお勧めしません。ただし、希釈 PMMA は、再現可能な結果を与えるが、以来このプロトコル使用 1% ポジ PMMA (30 nm 厚) 0.5% と 1% 否定的な調子 (15、30 nm 厚それぞれ)。そのポジ PMMA レジスト苦しまないパターン崩壊ネガ型 PMMA は、従って否定的な口調のため薄い厚さの使用のように、我々 は発見したテーブル 1.さらに、ネガ型 PMMA は ~ 50% 厚み損失電子ビーム露光後 (および開発の前に)、ので、ネガ型 PMMA の最終的な厚さは 7 〜 へ 15 nm。(図 4から 1.7 と 1.8 nm 機能の崩壊パターンの限界は、約 7 nm レジスト厚である)。図 4に示すように PMMA パターンは、CPD ステップ; を使用していません。しかし、可能な場合、このプロトコルは PMMA パターンの開発後 CPD の使用を推奨します。対照的に、CPD HSQ 処理 (例えばの図 5 に示すように、シリコンをエッチングするエッチング マスクとして使用する厚い HSQ パターンが必要、(薄い厚さを達成する) にさらに希釈することができないという事実のために重要であることがわかった).
図4 ポジ PMMA パターンはイメージ投射の間のコントラストを高める金属薄膜でコーティングしました。Manfrinatoらの仕事のサポート情報。1パターンの計測でこの金属コーティングの効果はごくわずかであることを示しています。同様に、我々 は HSQ に抵抗するために、図 5に示す結果が、基になる Si 層の極薄厚さに基づいて TEM ウィンドウ構造体の特定の選択に大幅に依存しないことを検討してください。
我々 の知る限り、ポジとネガ PMMA1 (図 4) の代表の結果のセクションで説明するすべての測定値が最小の機能1,7これまで文献で報告,12,16,17. Manfrinatoら。1はまた (ポジ型 PMMA) の従来の金属リフトオフと逐次浸透合成18 (ネガ型 PMMA) の酸化亜鉛を使用してターゲット材料へのレジストからサブ 5 nm パターン転写を示した。HSQ を図 5に示す結果は、報告機能最小7ではありません。しかし、このプロトコルは HSQ よりも 10 の解像度で再現性のある機能を取得するのに便利 nm、シリコン構造の単一の数字パターンを示します。
ここで提示されたプロトコルでは、PMMA と HSQ 従来電子線レジストを使用して桁ナノメートル精度の任意の構造を形成するためのプロセスについて説明します。さらに、ここで、文献 1 に示す結果は、高い忠実度で選択のターゲット材料にこのようなパターンを転送できることを示しています。
著者が明らかに何もありません。
この研究は、米国 DOE のオフィスの科学施設を契約番号下ブルックヘブン国立研究所は、機能性ナノ材料のセンターのリソースを使用・ デ ・ SC0012704。
Name | Company | Catalog Number | Comments |
Plasma asher | Plasma Etch | PE-75 | Located in class 100 cleanroom |
Silicon Nitride 5 nm thick TEM Windows (9 SMALL Windows) | TEM windows.com | SN100-A05Q33A | |
TEM chip holder for resist coating | Home made | ||
27 nm thick c-Si TEM Windows | TEMwindows.com | Custom order | |
A2 950K PMMA diluted in anisole to 0.5-1.0% by weight | MicroChem | M230002 | |
HSQ (1% solids XR-1541) e-beam resist in MIBK | Dow Corning | XR-1541-001 | |
Spinner | Reynolds Tech | ReynoldsTech Flo-Spin system | Located in class 100 cleanroom |
Hot plate | Brewer Science | CEE 1300X | Located in class 100 cleanroom |
Spectral reflectometer | Filmetrics | F20 | Located in class 1000 cleanroom |
Bath circulator | Thermo Scientific | Neslab RTE 740 | Located in class 100 cleanroom |
Optical microscope | Nikon | Eclipse L200N | Located in class 1000 cleanroom |
MIBK/IPA 1:3 developer | MicroChem | M089025 | |
Sodium hydroxide | Sigma-Aldrich | 221465 | |
Sodium chloride | Sigma-Aldrich | 31434 | |
Isopropyl Alcohol, ACS Reagent Grade | Fisher Scientific | MK303202 | |
TEM chip holder for critical point drying | Home made | ||
Critical point drying system | Tousimis | Autosamdri-815B, Series C | Located in class 100 cleanroom |
Aberration-corrected STEM | Hitachi | HD 2700C | |
Pattern generation system | JC Nabity Lithography Systems | NPGS v9 | |
Scanning Electron Microscope (SEM) | Hitachi | S-4800 | |
Reactive ion etcher | Oxford Instruments | Plasmalab 100 | Located in class 1000 cleanroom |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請さらに記事を探す
This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved