Method Article
在这里,我们提出了一种高效生产转基因大豆毛根的方案。
大豆(Glycine max)是一种有价值的农业作物,具有数千种工业用途。大豆根系是与土壤传播微生物相互作用的主要场所,这些微生物形成共生以固定氮和病原体,这使得涉及大豆根遗传学的研究对于提高其农业生产至关重要。大豆毛根(HRs)的遗传转化由根 茎农杆菌 菌株NCPPB2659(K599)介导,是研究大豆根系基因功能的有效工具,从开始到结束仅需2个月。在这里,我们提供了一个详细的协议,概述了在大豆HR中过表达和沉默目的基因的方法。该方法包括大豆种子灭菌,用K599感染子叶,以及选择和收获基因转化的HR进行RNA分离,并在必要时进行代谢物分析。该方法的通量足以同时研究多个基因或网络,并且可以在致力于长期稳定的转化方法之前确定最佳工程策略。
大豆(Glycine max)是农业中最有价值的作物之一。它具有数以千计的商业和工业用途,例如食品,动物饲料,油,并作为制造原料的来源1。它与固氮土壤微生物(即根瘤菌)形成共生关系的能力进一步提升了研究大豆遗传学的重要性2。例如,微调大豆根系的固氮特性可以减少碳排放,并大大降低对氮肥的需求3。因此,特别是了解控制大豆根生物学方面的遗传学在农业和工业中具有广泛的应用。考虑到这些好处,有一个可靠的方案来分析大豆基因的功能是很重要的。
根癌农杆菌可能是植物遗传转化最常用的工具,因为它具有将转移DNA(T-DNA)整合到许多植物物种的核基因组中的能力。当农杆菌感染植物时,它将肿瘤诱导(Ti)质粒转移到宿主染色体中,导致在感染部位形成肿瘤。几十年来,农杆菌介导的转化已被广泛用于基因功能分析和修改作物性状4。尽管任何目的基因都可以通过根癌曲霉介导的转化轻松转移到宿主植物细胞中,但这种方法有几个缺点;它耗时、昂贵,并且需要对大豆等许多植物物种提供广泛的专业知识。虽然少数品种的大豆可以通过使用根癌农杆菌的子叶节点方法进行转化,但这种方法的低效率需要一种快速高效的替代遗传转化技术4,5。即使是非专家也可以使用这种根茎农杆菌介导的毛根(HR)转化方法来克服这些缺点。
HR转化是一种相对快速的工具,不仅用于分析基因功能,还用于生物技术应用,例如生产专门的代谢物和精细化学品,以及复杂的生物活性糖蛋白6。大豆HR的生产不需要广泛的专业知识,因为它们可以通过伤害子叶表面,然后接种根 茎农杆菌7来产生。 A. rhizogenes 表达由其Ti质粒编码的毒力(Vir)基因,该质粒转移,携带并将其T-DNA片段整合到植物细胞的基因组中,同时刺激异位根生长8。
与其他大豆基因表达系统(例如基于生物利斯特或根癌农杆菌的组织、细胞和器官培养转化)相比,HR表达系统具有几个优点。首先,HR在遗传上是稳定的,并且在无激素培养基上快速产生1,9,10。此外,HR可以产生相当于或大于天然根11,12的特化代谢物。这些优点使HRs成为与根癌曲霉不相容或需要特殊组织培养条件以形成相容组织的植物物种的理想生物技术工具。HR 方法是一种使用 RNA 测序13,14,15 分析蛋白质-蛋白质相互作用、蛋白质亚细胞定位、重组蛋白质生产、植物修复、诱变和全基因组效应的有效方法。它还可用于研究在工业中具有价值的专用代谢物的生产,包括甘氨酸,其药物可预防大豆对重要的微生物病原体疫霉,并在人类中具有令人印象深刻的抗癌和神经保护活性16,17。
本报告展示了一种简单、高效的生产大豆 HR 的方案。 与以前的 HR 转化方法相比,该方案通过在接种大豆子叶之前预先筛选根 茎变形 体中存在 Ti 质粒的 HR 形成率,显着提高了 (33%-50%)。我们通过转换几种过表达或沉默大豆转录因子基因的二元载体来证明该协议的适用性。
注意:建议所有后续步骤在无菌条件下进行。
1.大豆种子杀菌
2.K599感染子叶
注意:使用pGWB系列载体,因为它们的双重选择可确保整个T-DNA盒的基因组整合。电穿孔用于将携带目的基因的二元载体转化为根 茎曲霉 菌pRi265918。
3. 人力资源的选择和收获
代表性结果来自已发表的数据19,20。转化的K599农杆菌的菌落PCR(cPCR)结果如图1所示。如图1中的阳性菌落所示,通过cPCR检测目的基因(图1A)。然而,三分之一到一半的菌落对VirD2基因筛选呈阴性(图1B),表明Ti质粒丢失,并且无法产生愈伤组织或毛根。图2显示了大豆HR和基因表达分析的整体制备过程。图3显示了GFP-GmJAZ1-6的亚细胞定位。图4是基因表达分析,显示了威廉姆斯82毛根中甘油素转录因子GmHSF6-1的过表达和GmMYB29A2的RNAi沉默。在最近的几份报告中也获得了类似的结果20,21。
图 1:使用目的基因或 VirD2 的菌落 PCR 引物对 K599 农杆菌进行菌落 PCR (cPCR)。 (A)目的基因cPCR。(B) VirD2 cPCR。缩写:C = 殖民地;+ve = 阳性对照;-ve = 阴性对照。请点击此处查看此图的大图。
图 2:大豆毛根 (HR) 培养和基因功能分析程序概述。 K599农 杆菌 感染后2周在伤口部位形成愈伤组织。细胞分化发生在 1 周后,然后经过 1 周进行 HR 伸长。随后进行HR收获和壁葡聚糖诱导器(WGE)/模拟处理24小时。分别进行HR进行代谢物提取进行超高效液相色谱(UPLC)分析和RNA分离进行基因表达分析。WGE是来自 疫霉的壁葡聚糖诱导剂。 请点击此处查看此图的大图。
图 3:转基因 Williams 82 毛根中 GmJAZ1-6 与绿色荧光蛋白 (GFP) 翻译融合的荧光显微镜。 (A) 绿色通道。(B) 蓝色通道 (DAPI)。(C) 合并的绿色和蓝色通道。所有图像均使用蔡司共聚焦显微镜收集。DAPI (6 μg/mL) 图像提示核染色。比例尺为 5 μm。 请点击此处查看此图的大图。
图4:基因表达分析。 (A)过表达GmHSF6-119 Williams 82大豆HRs在24 h模拟处理或用WGE诱导24 h时的基因表达。(B)RNAi-GmMYB29A2 20 Williams 82大豆HRs中的基因表达,用WGE诱导24小时。WGE是来自疫霉的壁葡聚糖诱导剂。 一个与对照组相比,配对学生t检验(p < 0.01)显著大于对照组和b显著小于对照组。误差线表示 SE(n ≥ 3 个生物学重复)。从一个主根收集的次生根表明一个生物学重复。该图经Lin等人19和Jahan等人20许可修改。请点击此处查看此图的大图。
在过去的十年中,大豆HR方法已被开发为研究参与固氮22,23,生物和非生物胁迫耐受性24,25以及代谢物生物合成途径26,27的基因的有力工具。植物如何产生代谢物的知识对农业生产和制药工业有很多好处,因为它可用于研究参与介导对病原体的生化防御的基因网络28。
为了优先考虑生产力和成本效率,该协议简化了程序。例如,不使用含有胶凝剂的更昂贵的固体培养基,而是使用富含液体生长培养基的工业级纸巾在无菌条件下发芽大豆种子。无菌实验室技术和保持无菌工作条件对于HR转化实验至关重要,因为真菌和酵母等多种微生物会导致 体外 培养物污染。
此外,使用适当强度的光和光周期对于心率培养至关重要。 体外 培养中植物的生长和发育过程受到光强度和光周期质量的显着影响, 正如在以前的各种研究中观察到的那样.如果光强度太低或太高, 它会减慢根诱导的过程.同样,如果光周期不合适,则可能导致愈伤组织形成和分化细胞发育失败29。此外,根据我们过去的实验,非转基因HR在用作唯一抗生素时对卡那霉素(50mg / L)具有抗性。出于这个原因,我们通常使用编码潮霉素和卡那霉素双重耐药性的载体。在这种严格的选择下,我们能够获得占总根的15%-30%的转基因HR阳性率,但~80%的HR具有由载体编码的显着过度表达/沉默的基因。
为了确保HR转化实验的成功,测试实验中使用的 根茎曲霉 菌株是否保留编码毒力基因的Ti质粒至关重要。Ti质粒的存在对于T-DNA成功整合到植物基因组中是必要的4。使用cPCR检测Ti质粒已成为该协议中必不可少的步骤。过去,我们发现33%-50%的转化无法产生愈伤组织和根。在不知不觉中,这是由于在根 茎曲霉的转化或随后培养过程中Ti质粒的丢失。现在,通过对转化后的 农杆菌 菌落进行PCR分析,我们确保Ti质粒存在,并且100%的转化实验产生根。在该协议中使用cPCR已被证明是标准HR转化程序的宝贵补充。它减少了失败的实验数量,从而节省了时间和资源。cPCR步骤还使我们能够确认转化过程按预期工作,确保实验结果可靠且可重复。
尽管如此,这种简化的方法还是有一些局限性。例如,该协议可以回答有关转基因HR中基因功能的基本细胞生物学问题。然而,与其他植物组织有关的问题,如芽和叶子,可能无法在HR中测试。确认所研究的过程不受异位激素水平或根 茎曲霉引入的其他因素的影响始终很重要。研究人员应注意其局限性并仔细设计实验,以确保准确和有意义的结果。
总之,这里展示的方案是研究大豆根系基因功能的高效方法。我们最近证明了它在研究多基因工程方法和了解参与调节大豆生化防御的基因网络方面的价值19。该方法的相对效率使其成为回答植物生物学中需要研究许多基因的复杂问题的理想选择。
作者没有什么可透露的。
这项研究由加拿大自然科学和工程研究委员会(NSERC)资助号RGPIN-2020-06111和Brad Lace的慷慨捐赠。我们要感谢Wayne Parrott (佐治亚大学)提供K599农杆菌和初步方案,感谢Nakagawa&Hachiya实验室(岛根大学)提供pGWB2,pGWB6和pANDA35HK空载体。
Name | Company | Catalog Number | Comments |
Acetosyringone | Cayman | 23224 | |
Bleach | lavo | 21124 | |
DMSO | Fisher bioreagents | 195679 | |
Gelzan | Phytotech | HYY3251089A | |
Hygromycin | Phytotech | HHA0397050B | |
Isopropyl alcohol | Fisher chemical | 206462 | |
Kanamycin | Phytotech | SQS0378007G | |
LB powder | Fisher bioreagents | 200318 | |
MS powder | Caisson labs | 2210001 | |
Na2HPO4 | Fisher bioreagents | 194171 | |
NaCl | Fisher chemical | 192946 | |
Petri dishes | Fisherbrand | 08-757-11 | 100 mm x 25 mm |
Phosphinothricin | Cedarlane | P034-250MG | |
REDExtract-N-Amp PCR Kit | Sigma | R4775 | |
Sucrose | Bioshop | 2D76475 | |
Timentin | Caisson labs | 12222002 | |
Vitamins | Caisson labs | 2211010 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。