Method Article
该协议描述了混合微驱阵列的构建,该阵列允许在自由移动的小鼠的两个大脑区域中植入9个独立可调节的四分线体和一个可调光硅探头。还演示了一种用于多种用途的安全回收和重复使用光硅探头的方法。
多区域神经记录可以为理解多个大脑区域之间的精细时间级交互提供重要信息。然而,传统的微驱设计通常只允许使用一种类型的电极从单个或多个区域进行记录,从而限制了单单元或深度轮廓记录的产量。它还经常限制将电极记录与光遗传学工具相结合以靶向通路和/或细胞类型特定活动的能力。这里介绍的是一个混合微驱阵列,用于自由移动的小鼠,以优化产量,并描述其制造和重用微驱阵列。目前的设计采用九个四分线和一个光硅探头,同时植入两个不同的大脑区域,在自由移动的小鼠中。四分线和光硅探头可沿大脑中的多索文轴独立调节,以最大化单位和振荡活动的收率。此微驱阵列还集成了光、中介光遗传学操作的设置,以研究远程神经回路的区域或细胞类型特定响应和功能。此外,光硅探头可以在每次实验后安全回收和重复使用。由于微驱阵列由 3D 打印部件组成,因此可轻松修改微驱的设计以适应各种设置。首先介绍了微驱阵列的设计以及如何将光纤连接到硅探头进行光遗传学实验,然后制作 ttrode 捆绑和将阵列植入小鼠大脑。记录局部场势和单位尖峰,结合光遗传学刺激,也证明了微驱阵列系统在自由移动小鼠的可行性。
通过调查不同大脑区域如何动态地相互作用,了解神经元活动如何支持认知过程(如学习和记忆)至关重要。为了阐明认知任务背后的神经活动动力学,在微驱阵列1、2、3的帮助下,在自由移动的动物身上进行了大规模的细胞外电生理学研究。 4.在过去的二十年里,已经开发出几种微驱阵列,为大鼠5、6、7、8和小鼠9植入多个大脑区域。10,11,12.尽管如此,目前的微驱设计一般不允许使用多种探头类型,迫使研究人员选择具有特定优点和限制的单电极类型。例如,ttrode 阵列适用于人口稠密的大脑区域,如背海马 CA11,13,而硅探针为研究解剖连接提供了更好的几何轮廓14,15.
特龙德和硅探头常用于体内慢性记录,各有优缺点。除了成本效益和机械刚度外,Tetrodes在单单元隔离方面比单电极16、17具有显著优势。当与微驱动器8、18、19、20相结合时,它们也能提高单单元活动的收益率。增加同时记录的神经元的数量对于理解神经回路21的功能至关重要。例如,需要大量细胞来调查功能异质细胞类型的小群体,如与时间相关的22或奖励编码23个细胞。需要更高的细胞数来提高尖峰序列13、24、25的解码质量。
然而,特龙在记录空间分布的细胞(如皮层或丘拉他)方面处于不利地位。与特罗伊德相比,硅探头可以提供局部场势(LLFP)的空间分布和相互作用,并在局部结构14、26中进行探针活动。多柄硅探头进一步增加了记录站点的数量,并允许跨单个或相邻结构录制 27。然而,与特龙相比,这种阵列在电极位点的定位上不太灵活。此外,高密度探测器需要复杂的尖峰排序算法,以提取有关相邻通道作用电位的信息,以镜像Tetrodes28、29、30获取的数据。因此,单单位的总体产量往往小于四元组。此外,硅探头由于其脆弱性和高成本而处于不利地位。因此,对硅探头的选择取决于记录的目的,即是否优先考虑在记录点获得高产量的单单元或空间分析。
除了记录神经活动,光遗传学操作已成为神经科学中更强大的工具之一,以检查特定细胞类型和/或通路如何促进神经回路功能13,31, 32,33.然而,光遗传学实验在微驱阵列设计中需要额外的考虑,以将光纤连接器连接到刺激光源34,35,36。通常,连接光纤需要相对较大的力,这可能导致探头在大脑中发生机械移动。因此,将植入式光纤与传统的微驱阵列相结合并非易事。
出于上述原因,研究人员需要根据记录的目的优化电极类型的选择或植入光纤。例如,在海马1,13中,四叶酸用于实现更高的单位产量,而硅探针用于研究皮质区域的层状深度轮廓,如中端皮质皮层(MEC)37。目前,据报道,为大鼠5、11同时植入三分线体和硅探头的微驱。然而,由于微驱的重量、鼠标头上空间有限以及设计采用不同探头的微驱的空间要求,在小鼠中植入多个四头和硅探头是极具挑战性的。虽然可以在没有微驱的情况下植入硅探头,但此过程不允许调整探头,降低了硅探针回收12、38的成功率。此外,光遗传学实验在微驱阵列设计中需要额外的考虑。该协议演示如何构建和植入用于自由移动小鼠的慢性记录的微驱阵列,这允许植入 9 个独立可调节的四分线体和一个可调节的光电探头。这种微驱阵列还有助于光遗传学实验和硅探头的回收。
这里描述的所有方法都已获得得克萨斯大学西南医学中心机构动物护理和使用委员会(IACUC)的批准。
1. 微驱阵列部件的准备
2. 光电探头制备
3. 泰特罗德准备
注:这个程序与先前发表的第8、19、20、39条类似。
4. 连接屏蔽锥体
5. 植入手术
注:这个程序是从先前发表的第18、39、41条修改为双位体植入的。确保动物的重量超过25克,用于微驱植入,从而在手术后更快地恢复。
6. 回收硅探针(图4D)
微驱阵列在5天内建成。表2描述了微驱准备的时间表。使用这种微驱,将9个四分线和一个硅探头分别植入小鼠的海马CA1和MEC[21周大/29克体重男性pOxr1-Cre(C57BL/6背景)]中。这种转基因小鼠在MEC层III金字塔神经元中表达Cre。在电极植入前10周,将200 nL的AAV5-DIO-ChR2-YFP(奶口:7.7 x 1012 gc/mL)注射到MEC中。使用低通滤波器(1-500 Hz)记录LLFP,并使用高通滤波器(0.8-5 kHz)检测到尖峰单元。光刺激(+ = 450 nm)使用1 ms脉冲宽度,在光纤连接器末端测量的10.6 mW强度下。Ttrode 记录的参考电极使用专用的 ttrode 导线放置在白色物质中。硅探头记录的参考被设置为探头的顶部通道。
在ttrode调整后,行为性能在线性轨道(图5A)和开放场(图5B)上进行测试。在这两个实验中,小鼠自由探索约30分钟(图5Aa,b,c;图 5Ba,b,c。在整个记录过程中,成功地记录了电生理信号,没有严重的运动相关噪声(图5Ad,e;图 5Bd,e.接下来,在MEC进行光刺激,以刺激MEC层III神经元,这些神经元投射到CA143(图6A)。当鼠标处于睡眠状态时,从三元和硅探头记录自发的探针活动(图6B、C)和LLF(图6D)。在四分线中记录的LLF显示大量的波纹活动,表明所有三元位都位于CA1金字塔细胞层附近。首先在MEC中观察到光诱导响应活动,随后在CA1中观察到13-18 ms延迟(图6E)。
图 1:微驱阵列概述。(A)微驱阵列的骨架视图,从 ttrode 侧 (a) 和硅探针侧 (b)。(B)加载的微驱阵列的真实图像,从 ttrode 侧 (a) 和硅探针侧 (b) 查看。微驱阵列放置在面板 (b) 中的夹具级上。(C)单个 3D 打印微驱阵列部件。(a-d)微驱阵列主体,从四个不同角度(a:ttrode 侧视图;b:硅探针侧视图;c:顶部视图;d:底部视图)。面板 (c) 中虚线的放大视图如图2A所示。(e) 穿梭,它容纳并允许调整硅探头。硅探头安装在面板 (e) 的虚线处。(f) 探头连接支架,该支架包含 32 通道硅探针连接器。(g) 光纤套圈,该支架装有光纤套圈,用于在用光源插入/拔下光纤连接器时防止探头移动。这部分由两个部分组成:[面板(g)和组件A和B]。(h) 印刷屏蔽锥体,在用导电材料涂漆时提供物理和电气屏蔽。锥形窗口允许在微驱阵列制备过程中看到结构内部,最终由一块胶带或 3D 打印材料覆盖。请点击此处查看此图的较大版本。
图2:主体上准备导杆和微驱螺钉。(A)后期准备指南。(a)图 1Cc所示微驱阵列体的放大视图。(b) 引导后插入身体的孔。(B)微驱螺杆设计。(a) 硅探头的微驱动螺钉,由 300 μm 间距定制螺钉、支撑管和 L 形管组成。(b) Ttrode 的微驱螺钉,由 160 μm 间距定制螺钉和 30 G 不锈钢导管组成。(C)微驱螺钉顶部件的制造:(a) 为微驱螺钉制备防模的 3D 打印图案。图为硅探针微驱螺杆的图案。(b) 使用防霉图案(a)和硅橡胶材料制成的模具。组装的微驱螺钉是通过插入定制螺钉和电线/管,并在每个井中浇注牙科丙烯酸来生产的。内景:模具井的放大视图。请点击此处查看此图的较大版本。
图 3:微驱阵列程序集。(A)制备光电探头。(a) 将两个塑料导管连接到穿梭。(b) 将光纤胶化到硅探针上。(c) 将穿梭连接到光电探头。在此图中,滑闸的底部(虚线)连接到硅探头的底座[背面(b)]。穿梭和硅探头柄应平行。(B)将光硅探头穿梭组件加载到微驱阵列体的引导柱中。(C)当探头完全缩回车身 (a) 且位于驱动体 (b) 的最低位置时,硅探针微驱的相对位置。L 形导线插入滑闸上的凹槽中。(D)光纤套圈和探头接头安装的爆炸视图。(E)屏蔽锥体连接。导电材料在圆锥内部涂漆。(F)使用纸和铝胶带的替代屏蔽锥体。(a) 图案纸。(b) 附加的替代屏蔽锥体,与3D打印版本相比,重量减少1.1克。请点击此处查看此图的较大版本。
图4:在硅探头的手术和恢复过程中密封探头。(A)微驱阵列和小鼠颅骨在颅内切除术后,在应用硅油脂之前。此时 , 硅探针入大脑约 2 毫米。(B)在硅探针和ttrode束周围涂上硅脂,以保护探针免受牙科丙烯酸的影响。(C)恢复期后、小鼠行走时(a)、梳妆(b)以及使用反平衡滑轮系统连接到记录电缆时,长期植入的小鼠。(D)回收的硅探头,在 (a) 和之后 (b) 浸入清洁溶液中。(a) 中的生物组织在清洁过程 (b) 后被移除。请点击此处查看此图的较大版本。
图5:在海马CA1和中端皮质皮层(MEC)中同时从行为小鼠进行三叶酸/硅探针记录的例子。(A)在线性轨道上录制。(a) 用于重新编码的线性轨道。(b) 在轨道上进行约30分钟的小鼠探索轨迹。(c) 直线轨道上的行为表现。(d-e)代表 LFP 记录从 ttrode (d) 和硅探针 (e)。(B)在开放字段中录制。(a) 用于重新编码的开放式现场室。(b) 在室中进行30分钟的小鼠探索轨迹。(c) 在开放领域的行为表现。(d,e)代表 LFP 记录从 ttrode (d) 和硅探针 (e)。LED 连接到头部放大器以记录鼠标的位置。线性履带和开场腔室与电气接地相连,以减少静电噪声。请点击此处查看此图的较大版本。
图6:CA1和MEC和光遗传学刺激中同时记录的代表性结果。(A)注射4周后AAV5-DIO-ChR2-YFP的表达。MEC层III金字塔神经元,投射其从背MEC到背CA1的斧子。虚线:奥里,地层或撬,地层金字塔;拉德, 地层辐射;摩尔,地层乳糖分子。(B)代表尖峰记录从其中一个三元。(a) 从ttrode记录的峰值的二维聚类预测。(b) 三个簇的平均尖峰波形的例子,用(a)中的虚线表示。(C)来自其中一个硅探针电极位点的代表性尖峰记录。(a) 尖峰主要组成部分的二维聚类预测。(b) 三个集群的平均尖峰波形示例。尖峰簇(粉红色和绿色)与噪声簇(蓝色)分离。(B,C) 中的群集使用 KlustaKwik 软件计算。(D)从CA1(a)中的四分线和MEC(b)中的硅探针同时记录自发LP的痕迹。黑色箭头表示 (B) 中显示的 ttrode 和 (C) 中所示的硅探针电极位点。(E)从CA1(a)的四分线和MEC(b)中的硅探头对脉冲光学刺激的LFP反应(10.6 mW,1 ms;填充红色箭头)。请点击此处查看此图的较大版本。
克/一 | 数量 | 总和 [克] | ||
主体 | 1.25 | 1 | 1.25 | |
穿梭 | 0.04 | 1 | 0.04 | |
探头连接器安装 | 0.19 | 1 | 0.19 | |
纤维套圈 | 0.1 | 1 | 0.1 | |
屏蔽锥 | 1.82 | 1 | 1.82 | (0.72)* |
导电膏 | 0.2 | 1 | 0.2 | |
机器螺钉(#00,2 毫米),用于固定 EIB | 0.05 | 2 | 0.1 | |
机器螺钉(#0-80,3.5 毫米) | 0.06 | 4 | 0.24 | |
机器螺钉(#0-80,6 毫米) | 0.09 | 2 | 0.18 | |
螺母 | 0.03 | 2 | 0.06 | |
微驱(特洛德) | 0.05 | 9 | 0.45 | |
微驱(硅探头) | 0.29 | 1 | 0.29 | |
硅探头 | 0.28 | 1 | 0.28 | |
电动接口板 | 0.6 | 1 | 0.6 | |
总 | 5.8 | (4.7)* |
表1:每个微驱阵列部件的单独重量。用环氧固定保护锥体后,微驱阵列的总重量为 5.9 g(*使用纸张和铝胶带使用替代屏蔽锥体)。
程序 | 时间 |
微驱动准备 | |
3D 零件打印 | 1 天 |
选择准备 | |
为微驱头准备模具 | 1 天* |
微驱动器头准备 | 3 小时 |
连接光纤 | 3 小时 |
连接穿梭机 | 3 小时 |
泰特罗德准备 | |
为微驱头准备模具 | 1 天* |
微驱动器头准备 | 3 小时 |
装载 ttrode 电线 | 1 天 |
连接屏蔽锥 | |
喷漆屏蔽漆 | 过夜* |
连接到微驱动器体 | 3 小时 |
• 这些程序可以并行进行 |
表 2:微驱准备的时间轴。3D 部件打印、等待固化硅橡胶/牙科丙烯酸/环氧树脂以及加载 ttrode 线需要微驱阵列制备的大部分时间,总共 4-5 天。
补充文件:补充文件包括五个微驱部件的3D模型数据,包括.sldprt和.stl格式。原始 3D 模型文件是使用软件 Solidworks2003 创建的。请点击此处下载此文件。
该协议演示如何构建和植入混合微驱阵列,允许使用独立可调的四轮驱动和硅探针记录来自两个大脑区域的神经活动。并演示了光遗传学实验和硅探头在实验后的恢复。虽然可调硅探针33或光硅探头36植入先前在小鼠中演示,但该协议在同时Ttrode阵列和光硅探头植入中具有明显优势,可提供灵活的选择植入式探头类型。植入式探头的类型可根据实验目的进行切换,如多柄探头27、44或超密度神经像素21、45。植入7的协调和角度,可根据需要在3D对象设计阶段轻松修改。例如,双位点甚至三位记录是可能的学习任务跨记忆相关的大脑结构,如海马46,内皮质皮层47,前额叶皮层48,杏仁核49,和结节皮层50。
成功植入和记录有几个关键程序。由于硅基探头的脆弱性,在装配过程中应尽量减少对微驱阵列的任何机械振动或影响。例如,在将硅探头装载到微驱阵列之前,应先使用钻头打开堵塞孔。此外,在微驱阵列构造和植入手术过程中,应强调仔细检查每个步骤的接地连接,以确保记录数据的稳定性。在录制过程中,与地面的不稳定或高阻抗连接会导致大量噪声和与运动相关的伪影。对于稳定的录音,建议在手术后等待1-2周,以避免电极漂移,因为脑组织受到植入手术的负面影响。然而,硅探头的信号质量在手术创伤1-2周后根据以往的经验恢复。建议使用单壳体,以防止其他小鼠损坏植入的微驱阵列。对于光遗传学实验,必须注意的是,大多数硅探针会因光刺激而诱导光伪影51,而其他的则旨在最小化光伪影52(有减少光伪影市售硅探针)。
微驱阵列(5.9 g)的重量比前面第12、53条中描述的典型微驱重,这主要是由于微驱阵列体(占总重量的21%)、屏蔽锥体(±31%)和金属部件(螺钉)和坚果: ±22%)建议使用重量超过25克(C57BL/6小鼠为54,55)的小鼠使用25克(+2-3个月大)进行植入手术,因为体重充足的小鼠往往更早恢复。因此,此微驱阵列可能不是幼鼠的最佳解决方案。虽然占小鼠体重5%-10%的设备经常被引导为植入体12,56(虽然没有支持这57的已公布数据),但这个微驱阵列的重量是体重的24%。25 克小鼠(使用下面描述的替代锥体时,±19%)。
然而,植入的成年小鼠能够自由移动,在家庭笼子里跳跃。植入类似微驱阵列重量(+4.5 g)的小鼠,即使在食物限制13、17下,也已被证明能够执行行为任务(线性迷宫任务)。重量的缺点在记录过程中不是问题,因为配重平衡系统18,34,58或头柱系统59将支持微驱阵列。此外,通过降低屏蔽锥的高度或减小厚度,并修改设计以利用较小的螺钉,可以减少微驱阵列的总重量。
使用当前的 3D 打印材料,屏蔽锥体的厚度可减小至 ±0.3 mm(当前厚度为 ±0.6 mm)。锥体高度可降低 ±5 mm,只要仍可覆盖 ttrode 电线。接触ttrode电线将导致电线断裂和长期记录故障。或者,使用纸和铝胶带制备屏蔽锥可将圆锥体重量降至±0.7克(总重量的±15%;比原微驱阵列的总重量减少20%);虽然,这些都是与体力的权衡。此外,微驱(电流屏蔽锥体:4.2 x 4.0 x 2.6 厘米 = 主轴 x 小轴 x 高度)如果从动物笼子顶部提供,则可能是食物和水获取的障碍。只要它们放在笼子地板上或从侧壁上,微驱就不会干扰老鼠的自然行为,如吃、喝、梳妆、饲养或筑巢。
总之,这种微驱动协议为研究人员提供了灵活的选择,用于从自由移动的小鼠的多个大脑区域进行记录,以了解长距离神经回路的动态和功能。
作者没有什么可透露的。
这项工作部分得到了日本科学海外研究促进协会(HO)、授予学者计划(TK)、人类前沿科学计划(TK)、脑研究基金会(TK)、学院科学和技术获取和保留计划 (TK)、大脑和行为研究基金会 (TK) 和住友基金会研究资助 (JY)、NARSAD 青年调查员研究资助 (JY)。我们感谢W.Marks在编写稿件期间提出的宝贵意见和建议。
Name | Company | Catalog Number | Comments |
#00-90 screw | J.I. Morris | #00-90-1/8 | EIB screws |
#0-80 nut | Small Parts | B00DGB7CT2 | brass nut for holding fiber ferrule holder |
#0-80 screw | Small Parts | B000FMZ57G | brass machine screw for probe connector mount, fiber ferrule holder, and shielding cone |
22 Ga polyetheretherketone tubes | Small Parts | SLPT-22-24 | for attaching to the shuttle, 0.025 inches inner diameter |
23 Ga stainless tubing | Small Parts | HTX-23R | for tetrode |
23 Ga stainless wire | Small Parts | HTX-23R-24-10 | for L-shape/support wire |
26 Ga stainless wire | Small Parts | GWX-0200 | for guide-posts |
30 Ga stainless wire | Small Parts | HTX-30R | for tetrode |
3-D CAD software package | Dassault Systèmes | SolidWorks 2003 | |
3D printer | FormLab | Form2 | |
5.5mil polyimide insulating tubes | HPC Medical | 72113900001-012 | |
aluminum foil tape | Tyco | Tyco Adhesives 617022 Aluminum Foil Tape | for the alternative shielding cone |
conductive paste | YSHIELD | HSF54 | for shielding cone |
customized screws for silicon-probe microdrive | AMT | UNM1.25-HalfMoon | half-moon stainless screw, 1.5 mm diameter, 300 µm thread pitch |
customized screws for tetrode microdrive | AMT | Yamamoto_0000-160_9mm | slotted stainless screw, 0.5 mm diameter, 160 µm thread pitch, custom-made to order for our design |
dental acrylic | Stoelting | 51459 | |
dental model resin | FormLab | RS-F2-DMBE-02 | |
Dremel rotary tool | Dremel | model 800 | a grinder |
drill bit | Fine Science Tool | 19007-05 | |
electric interface board | Neuralynx | EIB-36-Narrow | |
epoxy | Devcon | GLU-735.90 | 5 minutes epoxy |
eye ointment | Dechra | Puralube Ophthalmic Ointment | to prevent mice eyes from drying during surgery |
fiber polishing sheet | Thorlabs | LFG5P | for polishing the optical fiber |
fine tweezers | Protech International | 15-368 | for loading/recovering the silicon probe |
gold pins | Neuralynx | EIB Pins Small | |
ground wire | A-M Systems | 781500 | 0.010 inch bare silver wire |
headstage preamp | Neuralynx | HS-36 | |
impedance meter | BAK electronics | Model IMP-2 | 1 kHz testing frequency |
mineral oil | ZONA | 36-105 | for lubricating screws and wires |
optical fiber | Doric | MFC_200/260-0.22_50mm_ZF1.25(G)_FLT | |
Recording system | Neuralynx | Digital Lynx 4SX | |
ruby fiber scribe | Thorlabs | S90R | for cleaving the optical fiber |
silicon grease | Fine Science Tool | 29051-45 | |
silicon probe | Neuronexus | A1x32-Edge-5mm-20-177 | Fig. 3, 4A, 4B, 5 |
silicon probe | Neuronexus | A1x32-6mm-50-177 | Fig. 4C |
silicon probe washing solution | Alcon | AL10078844 | contact lens cleaner |
silicone lubber | Smooth-On | Dragon Skin 10 FAST | for preparation of microdrive mold |
silver paint | GC electronic | 22-023 | silver print II coating, used for ground wires |
skull screw | Otto Frei | 2647-10AC | 0.8 mm diameter, 0.200 mm thread pitch |
standard surgical scissors | ROBOZ | RS-5880 | |
stereotaxic apparatus | Kopf | Model 942 | |
super glue | Loctite | LOC230992 | for applying to guide-posts |
surgical tweezers | ROBOZ | RS-5135 | |
Tetrode Twister | Jun Yamamoto | TT-01 | |
tetrode wires | Sandvik | PX000004 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。