Method Article
Shown here is a method for visualizing extracellular matrix ultrastructure in decellularized cardiac tissues.
Fibrosis is a component of all forms of heart disease regardless of etiology, and while much progress has been made in the field of cardiac matrix biology, there are still major gaps related to how the matrix is formed, how physiological and pathological remodeling differ, and most importantly how matrix dynamics might be manipulated to promote healing and inhibit fibrosis. There is currently no treatment option for controlling, preventing, or reversing cardiac fibrosis. Part of the reason is likely the sheer complexity of cardiac scar formation, such as occurs after myocardial infarction to immediately replace dead or dying cardiomyocytes. The extracellular matrix itself participates in remodeling by activating resident cells and also by helping to guide infiltrating cells to the defunct lesion. The matrix is also a storage locker of sorts for matricellular proteins that are crucial to normal matrix turnover, as well as fibrotic signaling. The matrix has additionally been demonstrated to play an electromechanical role in cardiac tissue. Most techniques for assessing fibrosis are not qualitative in nature, but rather provide quantitative results that are useful for comparing two groups but that do not provide information related to the underlying matrix structure. Highlighted here is a technique for visualizing cardiac matrix ultrastructure. Scanning electron microscopy of decellularized heart tissue reveals striking differences in structure that might otherwise be missed using traditional quantitative research methods.
Fibrosis disrupts the normal myocardial collagen network, which is critical for normal mechanistic functions of cardiomyocytes 1,2 as well as for inter-cellular communication, intracellular signaling, and cell survival 3. The development of fibrosis is a major determinant of cardiac function, and fibrotic remodeling of the cardiac interstitium arising from a variety of etiologies leads to increased left ventricular stiffness and diastolic dysfunction 4. Myocardial fibrosis may also lead to arrhythmias, and whether the progression of fibrotic remodeling is a general or local phenomenon, it is highly associated with a poor prognosis in patients with ischemic and non-ischemic cardiomyopathy 5. Likewise, the absence of myocardial fibrosis is a strong predictor of ventricular functional recovery and long-term survival 6.
The hallmark of fibrosis is the deposition of excess collagen, which has the tensile strength of steel 7 and can adversely affect cardiomyocyte function on multiple levels. Mechanical forces resulting from an excessively collagenous matrix can lead to cardiomyocyte atrophy 8,9, passive tissue stiffness 10, tonic contraction-induced myocardial stiffness 11-13, and reduced delivery of oxygen to the remaining population of cardiomyocytes. Gap junction coupling of cardiomyocytes and myoFbs can also compromise the heart's electrical characteristics, creating a greater risk for the development of arrhythmias 14-16. Perivascular fibrosis alters vasomotor reactivity of intramural coronary arteries and arterioles 17 and contributes to luminal narrowing that reduces the supply of oxygen and thus the survival of cardiomyocytes 17-22. Pathogenic fibrotic and electrical remodeling, emanating from an initial site of ischemic injury or energy imbalance, inevitably progresses to heart failure.
Cardiomyocyte necrosis initiates the fibrotic response, and subsequent adverse fibrotic remodeling can occur irrespective of etiology. Finding a way to control cardiac fibrosis would be clinically beneficial for the treatment of ischemic and idiopathic cardiomyopathies, hypertensive heart disease, hypertrophic cardiomyopathy, valvular heart disease and dystrophinopathies 23-42. Regardless of how the fibrotic disease process begins, soluble, profibrotic factors can cross the interstitial space and provoke activation of interstitial and adventitial fibroblasts at sites remote to the initial fibrotic scar, creating a cascade effect that ultimately leads to heart failure. The optimum scenario would be to exploit the fibrillogenic process using a targeted therapeutic that can be applied during the compensative hypertrophic stage of cardiomyopathy before it progresses to systolic pump failure, diastolic heart failure, or other end-stage outcomes. The ultimate goal would be to reverse fibrosis so that dead cardiomyocytes can be replaced and heart function restored completely.
The importance of the matrix is widely understood, yet methods to study the matrix are limited mainly to quantitative measurements of major structural components, particularly collagen, and relative levels of different matrix and matricellular proteins. This protocol highlights a rarely used technique that is useful for assessing qualitative differences in the cardiac matrix. This technique has been recently used to compare and contrast fundamental differences in heart matrices from different etiologies of heart disease (in human explants), to examine hearts from post-infarcted pigs treated with the glial growth factor (GGF) isoform of neuregulin-1β, relative to untreated animals 43, and to probe for differences in the matrices of cardiac tissues from mdx mice (a commonly used animal model of Duchenne Muscular Dystrophy) at different ages and compared to wild-type controls. This technique was first introduced by Drs. Caulfield and Borg in 1979 44, but few studies have since employed this powerful technique 45-47, re-introduced here with only slight modification. This methodology is a valuable research tool, because it provides qualitative information about extracellular matrix ultrastructure that might otherwise be overlooked when simply measuring matrix component content and/or level of fibrosis.
伦理声明:动物处理的协议是由范德比尔特机构动物护理和使用委员会(IACUC批准,根据AAALAC -国际标准协议数M / 10/117(猪)和M / 10/219(小鼠)和进行。开户人的心脏组织的使用是经范德比尔特大学医学中心IRB(协议号为100887)。
1.样品采集和存储
2.心脏组织的脱细胞
3. Osmication和心脏组织脱水(在通风橱安全)
4.截面表面准备SEM
心脏组织5.临界点干燥(CPD)
6.安装心脏组织样本进行扫描电镜
7.心脏组织样本的扫描电镜检查
突出显示的技术应用于心脏组织从一个未使用的人体心脏移植供体( 图1),从移植,从野生型和营养不良的小鼠( 图3)的心外植组织和从猪心肌梗死后心脏的样品中心脏损伤模型( 图2)。 如图1所示,人的心脏基质的横截面中观察时显示一个蜂巢状图案的交联蛋白质的一种复杂的编织。每个'蜂窝'结构是约40微米宽,通常绕过单个肌细胞,考虑图1中的平面图时,当由闰盘相连,几个心肌可以为杆通过"隧道"当隐喻纵向运行设想延伸到立体感。 图1还亮点在切割过程中比在切割过程( 图1,右上)中被"打碎"节中的重要性,以更高的精度得到更多启示地形数据( 图1,左上)。
驻地心肌细胞,血管,和之前的SEM处理循环细胞的去除揭示额外超结构细节,这将是不太明显的由整个心脏组织块的SEM。每个单独的胶原"支柱",例如( 图1,下图)被定期显然对齐并垂直于肌原纤维肌节。这种安排是合适的帮助通过在收缩和舒张周期施加反作用变形,类似纺织品的"经纱和纬纱",有助于保持织物体和形式对拉伸维持心脏结构。
FO:保together.within页="1">
图1:细胞外基质的脱细胞左心室组织的三维排列从一个未使用的人类供心获得的代表性扫描电子显微照片的顶两个面板显示在低放大倍数(条= 500微米)的横截面的矩阵,提供正常人体心脏组织的体系结构的鸟瞰图。在更高的放大倍率,可以更好地观察到,为规则间隔肌纤维(中间左侧和右侧面板棒,分别= 100微米和50微米)的机械支撑支持纤维的典型蜂窝状结构。仔细观察,每个"蜂窝"是由被平行地彼此而垂直于驻地心肌(底部左侧和右侧面板棒=分别为10微米和5微米,)组织的纤维。TTPS://www-jove-com.remotexs.ntu.edu.sg/files/ftp_upload/54005/54005fig1large.jpg"目标="_空白">点击此处查看该图的放大版本。
除了提供结构信息,脱细胞的组织的SEM可以允许在响应损伤或心肌病的非伤害形式的细胞外基质的改变有意义,定性评估。例如,这种技术最近用于检查后梗死猪心脏组织43的细胞外基质。在这个大的动物实验的过程中,特别设计的,以评估作为心脏衰竭,其中接受静脉NRG-1β给药后梗塞猪潜在的治疗NRG-1β的GGF2同种型的功效在心脏基质表现出惊人的变化,相比于后梗死动物的未经处理的心脏组织。这些结果随后发表43和德chnique一直用于在该初始,偶然发现构建有价值的工具。 图2包括示例显微照片,该研究的过程中产生的,其突出未处理和NRG-1β处理的矩阵之间急剧矩阵差异。
图 2:在未处理和NRG-β -处理的猪 左心室外基质的代表性扫描电子显微照片 ,氢氧化钠浸渍后的截面的基质突出在未处理心肌梗塞后纤维中的常规空间排列(MI后)猪(左上),相比-MI后NRG-1β处理的动物(右上)。当在经度观察,在未经处理的猪的基质表现出厚,雾状外观(左下),而NRG-1β处理的猪的矩阵显示纤维定期空间排列(右下)。白条= 40微米(四个面板)。详细结果和数字都包含在相关稿件43。 请点击此处查看该图的放大版本。
的发生在营养不良心基质变化勘探也取得了定性分析上市杜氏肌营养不良症心肌病(DMD)的动物模型的发展和发展。在mdx小鼠,DMD的一种常用的小鼠模型中,有间的野生型和当用SEM固定和NaOH处理后观看的mdx心显著和年龄依赖性差异。如在图3中所示,矩阵组件相对正常在缺少相对于正常小鼠功能性肌养6周岁的mdx心。更多INTeresting,细胞外基质组织显然破坏或者老年性肌养缺陷型小鼠退化相比年轻mdx小鼠,示出了DMD的心脏中的进步性。没有料到会有这样深刻的分歧,因为mdx鼠是人类DMD病的代表性很差,由于他们表现出更温和型心肌病和死亡率比DMD 48人慢的事实。这表明,在心脏功能甚至微小的变化可使用本手稿呈现的可视化技术被捕获。这种方法也应容易适用于其他器官的细胞外基质,对其中有同样没有当前可用的纤维化靶向疗法。
图3:左法师的代表性扫描电子显微照片心室细胞外基质中的野生型相比 mdx 鼠。在野生型小鼠的左心室心肌基质(顶面板)类似于在其他物种观察。在6周龄mdx鼠矩阵在外观上看起来(中板)比较正常,虽然略显"蓬松"。相反地,较旧的mdx小鼠的心脏基质出现严重退化(底部面板),表明营养不良过程可以在固定,氢氧化钠,浸软组织使用SEM定性捕获。白条= 10微米(全三板)。 请点击此处查看该图的放大版本。
横截面表面处理是协议中最关键的一步。为了保持精细结构,脱水标本必须在任何时候都保持在100%的乙醇,直到引入到临界点干燥工序。因此样品的切片,以实现EM检查表面必须同时标本在乙醇浸没在浅盘来完成。它也是至关重要的暴露表面不触及或后续处理期间探测。任何重大修改,预计在这一技术到其他组织类型相似矩阵的观测应用程序,不过协议的SEM部分可能需要基本的电子显微镜故障排除任何样本来源。从纤维样品采集到的图像易于由电荷差耗散("充电")介绍了伪像。充电的问题通常可以通过降低加速电压,增加扫描速度(也称为停留时间被最小化)和减小电子束的斑点尺寸。收集几个扫描积分的速度不够快,以避免电荷的工件将产生可比较的信号噪声质量的图像,而不存在于较慢,更高质量的单个扫描图像的电荷工件。
这种技术是固有的定性,因此当沿着定量测量( 例如 ,Masson三色或picoserius红染色,羟脯氨酸含量,质谱和RNA测序测量),以确定可视结构差异如何可以与各种发育或疾病状态被认为补充。然而,尽管有这种限制,该方法是超出心脏纤维化特别显著,由于细胞外基质在体内几乎每个器官的一个基本组成部分。在心脏,心脏矩阵为连续抽特点是复杂的拉伸,扭曲和DEF关键机械支撑ormation,其赋予对发生在人类平均寿命的> 2.5十亿次的氧化和脱氧的血液49最佳条目和流出。定心脏组织的极低再生能力,可以根据上下文需要被改造一个动态矩阵使得逻辑意义。仅与一个想象的轻微弹力,人们可能推断出存在用于操纵基质重塑增强愈合过程的治疗目标,同时限制不利的纤维化。至少在展示技术的应用展示了心脏矩阵的复杂性和美感,这样做进一步强调了其功能的重要性。
而定量测量值对于几乎所有的实验研究的评估的核心原则,该技术此处突出可以用于揭示定性超微结构的变化,不仅补充标准矩阵测量但可能暗示替代路径的调查了解,强调质变的根本生化改变。预期未来这种技术的应用是其在心脏疾病模型和人体组织作为评估矩阵的变化的辅助工具的使用,以及扩大的使用来研究其他器官的量矩阵的变化是疾病过程的一个组成部分。
The authors have nothing to disclose.
This study was funded by grants from the National Institutes of Health (NIH), Heart, Lung, and Blood Institute (NIHLB): K01-HL-121045, K08-HL-094703, 5T32HL007411-35, P20 HL101425, U01 HL100398.
Imaging and tissue processing (after NaOH maceration) were performed through the use of the Vanderbilt University Medical Center (VUMC) Cell Imaging Shared Resource (CISR) (supported by NIH grants CA68485, DK20593, DK58404, DK59637 and EY08126). We are especially grateful to the VUMC CISR core directors (Dr. Sam Wells and Dr. W. Gray (Jay) Jerome) for valuable technical advice and also for providing core space and resources for the purposes of filming the technique highlighted in this paper.
We would like to extend our deepest appreciation to Dr. Yan Ru Su and Ms. Kelsey Tomasek in the Cardiology Core Lab for Translational and Clinical Research at Vanderbilt University for providing technical expertise and for collecting human tissue samples used in this study.
Name | Company | Catalog Number | Comments |
Calcium Chloride | Electron Microscopy Sciences | 12340 | 100 g |
Carbon Adhesive | Electron Microscopy Sciences | 12664 | 30 g |
Carbon Adhesive Tabs | Electron Microscopy Sciences | 77825 | order to fit stubs |
Double Edge Razor Blades Stainless Steel | Ted Pella, Inc | 121-6 | 250/pkg |
Ethanol | Electron Microscopy Sciences | 15055 | 450 ml |
Gluteraldehyde, 50% Solution | Electron Microscopy Sciences | 16310 | EM grade, distillation purified |
Hydrochloric Acid | Electron Microscopy Sciences | 16760 or 16770 | 100 ml |
Monosodium Phosphate NaH2PO4 | Sigma-Aldrich | S9251-250G | 250 g |
Osmium Tetroxide | Electron Microscopy Sciences | 19100 | 1 g |
Silver Conductive Adhesive | Electron Microscopy Sciences | 12686-15 | 15 g |
Sodium hydroxide (NaOH) | Sigma-Aldrich | S8045-1KG | 1 kg |
Sodium Phosphate Dibasic (Na2HPO4) | Sigma-Aldrich | S3264-500G | 500 g |
Tannic Acid, 5% Aqueous | Electron Microscopy Sciences | 21702-5 | 500 ml |
Trihydrate Sodium Cacodylate | Electron Microscopy Sciences | 12300 | 100 g |
Gold-palladium Alloy or Gold | Refining Systems, Inc. | varies | specific to the sputter coater make and model |
Critical Point Dryer | Electron Microscopy Sciences | 850 | |
Plain Wooden Applicators | Fisher Scientific | 23-400-102 | |
Quanta 250 Environmental SEM | FEI | Q250 SEM | |
Sputter Coater | Cressington Scientific Instruments Ltd. | Model 108 | |
Alluminum SEM Sample Stubs | Electron Microscopy Sciences | 75220-12 | specific to the miscroscope |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。