Method Article
小肠隐窝类器官培养离体提供的组织培养系统,该系统概括隐窝依赖于干细胞和它们的生态位的增长。我们建立了一个方法,以测定在实时在原代小鼠隐窝类器官的代谢分布图。我们发现组织体保持了其源定义的生理特性。
小肠粘膜表现出组织成两个基本结构的重复架构:绒毛,伸入肠腔和成熟肠细胞,杯状细胞和肠内分泌细胞组成;和隐窝,驻留近端粘膜下层和肌层,窝藏成体干细胞和祖细胞和成熟的帕内特细胞,以及基质和隐窝微环境的免疫细胞。直到最近几年, 在小肠体外研究仅限于从良性或恶性的肿瘤衍生的细胞系,并没有表示的正常肠上皮细胞的生理机能和在它们所在的微环境的影响。在这里,我们展示了从培养C57BL / 6小鼠的原代小鼠小肠隐窝类器官改编自佐藤等人的方法。(2009)。此外,我们目前使用的crypt类器官培养法检测进行实时测量地穴新陈代谢换货基础耗氧量,糖酵解速率,ATP的产生和呼吸的能力。类器官维持他们的源代码中定义的属性,并保留其代谢改编耗氧量和胞外酸化率反映的各个方面。在这个地穴化培养系统实时代谢研究是一个强大的工具来研究隐窝类器官的能量代谢,以及如何通过营养和药物因素的调节。
结直肠癌(CRC)是癌症相关死亡在美国的第三大原因。散发性大肠癌- 即后来的生活产生(> 50岁),并没有明确的遗传易感因素-占〜80% 的情况下,随着发病率的长期膳食模式1,2的强烈影响。这些肿瘤中表现出对依赖性代谢移对氧化糖酵解,被称为Warburg效应,这可能部分地使较高浓度的蜂窝构件和能量可用(通过谷氨酰胺),以允许和也许驱动的肿瘤细胞的增殖3-5率高。结肠癌的研究以及其他胃肠道癌症,包括小肠肿瘤提供重要的洞察肿瘤形成的原因。调查胃肠器官系统,可协助DET正常的,有利于肿瘤发生和肿瘤发生的国家之间的代谢差异发芽对肿瘤发展的相对风险,以及早期发现肿瘤的。此外,了解生物能量代谢涉及到线粒体呼吸和糖酵解提供基本的深入了解细胞生理学,老化和疾病状态扰乱肠道内环境稳定。生物能学分析技术,细胞外流量分析,可以利用在细胞生长在培养实时6,7同时评估线粒体呼吸和糖酵解的速度。
直到最近, 在体外研究小肠被限制在由良性或恶性肿瘤8,9的细胞系,并没有代表正常的肠道上皮细胞的生理和他们所在的微环境的影响。在2009年,Sato 等人 10导入离体培养体系生长的三维(3D)的小鼠的肠上皮组织体,或epithelial"微型胆",适用于实验,诊断和治疗的研究10,11。此外,隐窝从calorically限制小鼠中分离维持其改变的生长特性类器官在这样的文化12。相比于转化的细胞系,隐窝类器官培养物可以被用于产生生理相关数据呈现出好得多的模型,以了解在体内的状态。
我们调整生物能量学分析技术测定肠隐窝组织体的能量代谢。小鼠小肠隐窝类器官培养体外发展提出的墓穴类器官的能量代谢研究。耗氧率(OCR)和隐窝组织体的细胞外酸化速率(ECAR)测定在不存在和两种不同的代谢抑制剂(寡霉素,鱼藤酮),和离子载体(羰基氰 - 对 - trifluoromethoxyphenylhydrazone)存在下进行。地穴奥尔加这些化学物质NOID代谢反应,通过改变ECAR和OCR值成功体现。
细胞生物能的研究将阐明代谢状态和疾病的风险和表型之间的相互交流的癌症,肥胖症,糖尿病,代谢紊乱和线粒体疾病,并有助于与转化医学直接影响预先筛选方法。在这里,我们描述了一个详细的协议来隔离小肠隐窝和文化隐窝类器官。此外,我们引入了一种新的方法来使用地穴类器官培养的代谢试验。
按照指南中的美国国立卫生研究院实验动物的护理和使用的建议进行研究。该方案经委员会医学爱因斯坦医学院动物实验的伦理。
1.地穴的分离与培养
2.地穴类器官代谢分析
地穴类器官是8月龄C57BL / 6小鼠饲喂建立纯化营养76A(AIN76A)的啮齿动物饲料美国学院。肠隐窝组织体可以生长在培养物从单个隐窝( 图1A,单红色箭头)长时间。组织体生长出隐窝状结构在18-20天后在培养物( 图1B,红色箭头)。隐窝传代,每3周和组织体有效回收下列各通道。
海马生物能量的仪器可以在细胞生长在培养的实时同步评估线粒体呼吸和糖酵解的速度。我们采用了这种技术来测定隐窝类器官的新陈代谢。与来自于喂养小鼠AIN76A纯化饮食8个月的组织体,我们测量:1,氧的消耗速率, 如图2A中所示的OCR -红线代表在隐窝组织体的氧消耗速率(皮摩尔/分钟),蓝色是第e控制井只用基质胶(凝胶状蛋白混合物);在图2B所示2.细胞外酸化速率(ECAR) -红线代表在隐窝组织体细胞外酸化速率(MPH /分钟),蓝色是对照孔仅与胶状蛋白质混合物。
图1:从8月衍生的C57BL / 6小鼠隐窝组织体隐窝是(A)的 2天或(B)18天培养。规模:100微米。
图2:使用从8个月大的C57BL / 6小鼠的组织体生物能学测定法。 (A)耗氧率(OCR)显示; (B)外酸化速率(ECAR)所示。注:红色 - 隐窝,蓝色 - 控制,只有基底膜。 N = 3,试剂注入顺序 - 由蓝色竖线表示 - 如下:A,寡;乙,羰基氰化物对 - trifluoromethoxyphenylhydrazone(FCCP); C,鱼藤酮。
我们测试的耗氧率(OCR)和隐窝中分离出8个月大的小鼠并生长成组织体在体外的细胞外酸化速率(ECAR)的基础量的测定之后,隐窝代谢物通过增加寡霉素,羰基氰化物评价-p-trifluoromethoxyphenylhydrazone(FCCP)和鱼藤酮,按顺序。
基底OCR和基底ECAR记录从0 - 29分钟( 图2A和2B)。在第 29 届分钟,寡霉素(来自端口A)注射到每个孔中(n = 3时,两个隐窝和对照孔)。寡霉素是一种ATP合成酶抑制剂。它是用来防止状态3(磷酸化)呼吸。因此,寡霉素注射导致轻微降低的OCR,由于ATP合成的线粒体封锁,和隐窝切换到糖酵解来满足其对ATP的产生增加ECAR要求。在64 个分,FCCP(来回米的B端口)注射到每个孔中。 FCCP是移动的离子载体,输送氢离子穿过线粒体膜,导致快速的能量消耗,而不需要ATP的生成。 OCR增加,由于解耦和ECAR增加,因为隐窝采用糖酵解生成ATP,从而合成和分泌乳酸保持自己的能量平衡。在第 99分钟,鱼藤酮(从端口C)注入每个孔中。鱼藤酮是一种线粒体抑制剂。因此,第三注入导致的OCR减少由于受损的线粒体功能和移位的隐窝到更糖酵解状态保持升高的ECAR值。
有两个主要结论:1)隐窝组织体从经过多次传代成功地进行培养8个月大的小鼠; 2)组织体已被传代培养2个月后的推导表现出代谢响应于寡,羰基氰化物对 - trifluoromethoxyphen ylhydrazone和鱼藤酮。因此,组织体糖酵解能力为2个月的文化,与来自calorically限制小鼠的组织体相对长期适应于不同的生长和代谢表型文化12报告一致后保持稳定。
在这个协议中所述的实验步骤将是在肠腺的代谢研究具有重要意义。该协议为隐窝隔离适于从佐藤等人 10所述的协议,用于学习隐窝代谢中使用生物能学分析技术还没有报道小肠隐窝类器官培养物。隐窝类器官代谢研究可以扩展进一步引入不同的变量到培养基和测定条件,如不同的能量源,酶抑制剂和特定的信号和代谢途径的活化剂,并在低氧条件是可以调节的代谢途径。
ontent">有应用这些协议时,需要特别注意的技术问题。根据地穴地穴源数量和隐窝类器官培养物的生长效率可能会有所不同, 例如 ,从遗传学改变与野生型小鼠隐窝,因此,隐窝接种密度可用于实验通过运行一个试验来调整。另外,隐窝和organids有强烈倾向粘到表面上。为了提高产量,所有的管(1.5毫升,15毫升,和50ml试管),移液管和移液管尖端可以是在4℃下过夜包被有1%胎牛血清的磷酸缓冲盐水,结果可以通过使用二辛可宁酸被归一化至总蛋白质浓度(BCA)测定法。代谢试验后,将24孔板中被保持在冰上,直到BCA测定。对于BCA测定,隐窝被轻轻地在500μl洗涤冷PBS洗三次,并通过剧烈振荡1小时,在室温下溶解在75微升0.1N NaOH中的PBS中,随后,一个P1000的吸移管可以用来打破胶状蛋白质混合物并吹打上下促进溶解。隐窝裂解后,标准的BCA检测协议用于细胞可以遵循。有"只基质胶"对照孔在整个生物能学分析以测量在这些孔中的背景蛋白质浓度,从而通过BCA测定准确评估隐窝蛋白浓度是很重要的。呈现隐窝类器官代谢研究可以应用于正常和患者来源的上皮迷你胆探索实用程序的相对疾病风险,并且可调节的代谢表型,并因此降低风险的方法早期评价。这里所描述的代谢试验引入对疾病发展的相对风险可能评估和早期发现疾病状态,其生化和分子解剖和潜在的新的调制策略。综上所述,我们描述了一个详细的协议隔离的小intestina升隐窝和文化隐窝类器官。此外,我们引入了一种新的方法来使用的crypt化培养,用于确定细胞外酸化和耗氧率研究隐窝类器官的能量代谢。体外隐窝化培养的代谢谱研究会定义新的策略,理解肠道生物学。
有没有披露。
这项研究是由赠款RO1 CA 135561,R01 CA151494,R01 CA174432和P3013330来自美国国立卫生研究院的支持。
我们要感谢米歇尔·休斯顿,艾琳娜Dhima和安娜Velcich博士开发的地下室隔离协议提出宝贵的意见。
我们也感谢糖尿病的培训和医学用NIH P60DK20541支持的阿尔伯特爱因斯坦医学院的研究中心,以及迈克尔·布朗利博士和博士学梁笃,直接和运营海马工厂,分别是谁。
Name | Company | Catalog Number | Comments |
BD Matrigel Basement Membrane Matrix, GFR, Phenol Red-free, LDEV-free | BD Biosciences | 356231 | |
PBS (phosphate buffered saline), no magnesium, no calcium, pH 7.2 | Life Technologies | 20012-027 | |
Advanced DMEM/F-12 (1x) | Life Technologies | 12634-028 | |
Dulbecco′s Modified Eagle′s Medium w/o glucose, L-glutamine, phenol red, sodium pyruvate, and sodium bicarbonate | Sigma-Aldrich | D5030 | |
Phenol red sodium salt | Sigma-Aldrich | P4758 | Final Concentration 15 mg/l in DMEM (D5030) - step 2.2.2 |
Antibiotic-Antimycotic, 100x, 100 ml | Life Technologies | 15240-062 | Final concentration 1x or 2x |
Penicilin-Streptomycin, liquid | Life Technologies | 15140-122 | Final concentration 1x |
Gibco® GlutaMAX™ supplement | Life Technologies | 35050061 | Final concentration 1x |
Gibco® HEPES (N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid), 1 M | Life Technologies | 15630-080 | Final concentration 10 mM |
N-acetyl-L-cysteine, 25 g | Sigma-Aldrich | A9165-25G | Final concentration 1 mM |
100x N-2 supplement, liquid | Invitrogen | 17502-048 | Final concentration 1x |
50x B-27® supplement minus Vitamin A, liquid | Invitrogen | 12587-010 | Final concentration 1x |
Recombinant Mouse R-Spondin 1, CF, 50 μg | R&D Systems | 3474-RS-050 | Final concentration 500 ng/ml |
Recombinant Murine EGF, 100 μg | Peprotech | 315-09 | Final concentration 50 ng/ml |
Recombinant Murine Noggin, 20 μg | Peprotech | 250-38 | Final concentration 100 ng/ml |
Gibco® L-glutamine, 200 mM | Life Technologies | 25030-081 | Final concentration 2 mM |
Gibco® glucose powder | Life Technologies | 15023-021 | Final concentration 5 mM |
Ambion® 0.5 M EDTA (ethylenediaminetetraacetic acid), pH 8.0 | Life Technologies | AM9260G | Final concentration 3 mM for step 1.1.5; 2 mM for step 1.1.8 |
[header] | |||
DTT (dithiothreitol), 1M | Life Technologies | P2325 | Final concentration 3 mM |
Albumin from bovine serum (BSA) | Sigma-Aldrich | A2058 | 0.1% in PBS |
Fetal Bovine Serum (FBS) | Life Technologies | 16000-044 | 1% in PBS |
Recovery™ Cell Culture Freezing Medium | Life Technologies | 12648-010 | |
ROCK inhibitor (Y-27632) | Sigma-Aldrich | Y0503 | Final concentration 10 μM |
Oligomycin | Sigma-Aldrich | O4876 | Final concentration 1 μM |
Carbonyl cyanide-p-trifluoro-methoxy-phenyl-hydrazone (FCCP) | Sigma-Aldrich | C2920 | Final concentration 1 μM |
Rotenone | Sigma-Aldrich | R8875 | Final concentration 1 μM |
Sodium hydroxide | Sigma-Aldrich | 221465 | Final concentration 0.1 N in PBS |
XF24 Extracellular Flux Analyzer (XF Analyzer) | Seahorse Bioscience |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。