Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California
Anterograde amnesia is the loss of the ability to form new memories. This can be distinguished from retrograde amnesia, which is the loss of old memories. Anterograde amnesia can result from damage to structures in the brain that are involved in the formation of new memories. Patients who have damage to the structures of the medial temporal lobe, including the hippocampus, amygdala, and the surrounding cortices, often have severe deficits in the formation of certain kinds of memories. These cases can be informative as to how memory is organized in the brain, and how different systems support different kinds of memories.
In this video, we will test a patient with medial temporal lobe damage on a series of memory tasks designed to distinguish between different forms of memory. First, we will test short-term or working memory, which is the process we use to keep information in mind temporarily. Next, we will test two different forms of long-term memory: explicit and implicit memory. Explicit memories are conscious and easy to verbalize. For example, memories of facts or episodes from our lives are explicit memories. We can easily tell someone what we ate for breakfast, or what city is the capital of France. Implicit memory involves knowledge we gain from experience but that is not easily expressible. For example, knowing how to do things, or becoming habituated to a stimulus are forms of implicit memory.
These procedures are based in part on studies of the famous patient Henry Molaison, also known by his initials H.M., who had severe anterograde amnesia as a result of a surgery for intractable epilepsy in which parts of both temporal lobes were resected.1 We will perform a test of digit span, which measures short-term memory, a test of paired-associate learning, which measures explicit or declarative memory, and mirror-drawing, a test of implicit skill learning.2
1. Recruit participants.
2. Test short-term memory: Digit Span.3
3. Test explicit memory: Verbal Paired-associate Learning.4
4. Test implicit memory: Mirror Drawing.5
Figure 1: The mirror drawing apparatus. This apparatus allows the participant to see his or her own hand only through the mirror reflection. The goal is to trace within the double lines of the star shape without touching the lines. This is a difficult task because visual feedback from the mirror conflicts with sensory and motor feedback from the hand.
On the Digit Span Test, the patient successfully repeated a sequence of six digits in forward order, and five digits in reverse order. This level of performance shows some degree of intact short-term memory; average performance on this task for the healthy controls was seven forward, six reverse (Figure 2A). On the Verbal Paired-associate Test, the patient was not able to recall a single word pair. This demonstrates a severe deficit in the formation of explicit long term memories (Figure 2B). On the Mirror Drawing task, the amnesic patient shows fewer errors with practice, evidencing an ability to learn a motor task (Figure 2C).
Figure 2: Performance on three memory tests. The patient showed relatively intact performance on the Digit Span Test, but was severely impaired in the Verbal Paired-associate Learning task. Performance on the motor learning task showed improvement over time.
These results demonstrate two important dissociations. The first is a dissociation between short-term memory, which requires active rehearsal to maintain, and long-term memory, the process that allows us to hold on to information without needing continual rehearsal. Patients with medial temporal lobe damage generally do not have major difficulties with short-term memory, as demonstrated by an intact digit span. However, after a few seconds, if information is not rehearsed, it is not maintained. This is demonstrated by the complete inability to retain the paired word associations in our patient. The second dissociation is between explicit and implicit memory. While this patient cannot remember the words recently seen, the Mirror Drawing test shows that they are able to learn a motor skill, a kind of learning which does not depend on medial temporal lobe structures.
Cases like these have been incredibly important in the history of cognitive neuroscience for learning associations between brain structures and function. While this video has demonstrated a general effect of medial temporal lobe damage on memory function, it is important to note that a deeper understanding requires an examination of the relationship between the specifics of which structures were damaged, and memory performance. In the case of Henry Molaison, it was many years before the technology of brain imaging allowed for a clear understanding of the nature of his lesion. After he died in 2008, a post-mortem examination allowed a precise reconstruction of the lesion, showing that in addition to large portion of the hippocampus, there was also damage to the surrounding cortex and white matter fibers that carry signals into and out of the hippocampus.6
Memory loss is a consequential component of many forms of neural disease; in addition to resulting from focal brain damage, memory disturbances may result from degenerative diseases such as Alzheimer's Disease and Fronto-Temporal Dementia. Those conditions typically affect explicit long-term memories. Alternatively, motor learning, like the kind tested here, may be affected in conditions that affect the basal ganglia like Parkinson's Disease. Given the importance of memory in our lives, understanding the neural systems that underlie different forms of memory, and how memory is parcellated into different processes may also lead to techniques for improving memory performance.
Skip to...
Videos from this collection:
Now Playing
Neuropsychology
30.3K Views
Neuropsychology
68.3K Views
Neuropsychology
27.5K Views
Neuropsychology
12.0K Views
Neuropsychology
32.4K Views
Neuropsychology
17.7K Views
Neuropsychology
16.2K Views
Neuropsychology
27.5K Views
Neuropsychology
19.6K Views
Neuropsychology
17.1K Views
Neuropsychology
17.3K Views
Neuropsychology
6.4K Views
Neuropsychology
41.7K Views
Neuropsychology
16.7K Views
Neuropsychology
10.1K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved