Source: Laboratories of Judith Danovitch and Nicholaus Noles—University of Louisville
Jean Piaget was a pioneer in the field of developmental psychology, and his theory of cognitive development is one of the most well-known psychological theories. At the heart of Piaget’s theory is the idea that children’s ways of thinking change over the course of childhood. Piaget provided evidence for these changes by comparing how children of different ages responded to questions and problems that he designed.
Piaget believed that at age 5, children lack mental operators or logical rules, which underlie the ability to reason about relationships between sets of properties. This characteristic defined what he called the preoperational stage of cognitive development. One of Piaget’s classic measures of children’s ability to use mental operations is his conservation task. In this task, children are shown two identical objects or sets of objects. Children are first shown that the objects are the same on one key property (number, size, volume, etc.). Then, one of the objects is modified so it appears different than the other one (e.g., it is now longer, wider, or taller), but the key property remains the same. Following this transformation, children are asked to judge if the two objects or sets of objects are now the same or different with respect to the original key property.
Piaget reported that children in the preoperational stage (approximately ages 2-7) typically judged the objects to be different after the transformation, even though the key property had not changed. He attributed children’s incorrect responses to their excessive focus on the change, rather than on the fact that the key property remained the same. However, over the years, researchers have argued that Piaget’s conservation task is an invalid measure of children’s reasoning skills. These critics have suggested that children’s poor performance is due to task demands, such as assumptions about the experimenter’s goals and expectations when the question about the key property is repeated.
This video demonstrates how to conduct Piaget’s classic conservation task,1–2 and how a small modification in the task design can dramatically change children’s accuracy (based on the methods developed by McGarrigle and Donaldson3).
Recruit 4- to 6-year-old children who have normal vision and hearing. For the purposes of this demonstration, only two children are tested (one for each condition). Larger sample sizes are recommended when conducting any experiments.
1. Gather the necessary materials.
2. Data collection
3. Analysis
Researchers tested 20 4- through 6-year-old children and found that children in the accidental condition were much more likely to judge the number or length of the objects had stayed the same after the transformation (Figure 1). Children in the intentional condition performed very poorly (12% correct responses) compared to children in the accidental condition (62% correct). The intentional condition in this study corresponds to Piaget’s original method for the conservation task. Thus, this pattern of results suggests that children are more likely to pass Piaget’s conservation task when the task is framed in terms of an accidental transformation, rather than an intentional one. However, it is notable that even in the accidental condition, children in this age range still had some difficulty discerning the correct answer.
Why do children find it easier to judge that the two sets of objects remain the same when they have been rearranged by a naughty bear than when the experimenter rearranged them? One explanation is that children interpret the question differently in each condition. In the intentional condition, when the experimenter deliberately moved the object and then repeated the initial question, children may have assumed the experimenter was now referring to the dimension that was manipulated (e.g., area covered by the tokens) rather than the key property, and this led them to answer incorrectly. However, in the accidental condition, children had no reason to think the experimenter intended to change anything, and therefore they focused on the key property and answered correctly.
Figure 1: Mean percentage of trials in the accidental and intentional conditions where children judged the key property was the same after the transformation.
This demonstration illustrates how task demands can affect the outcomes of psychological research, particularly in young children. The assumptions children make when an adult is talking to them and asking difficult questions may not always be obvious, but they can have a major influence on how children respond. This finding is important not only for researchers, but also for educators, parents, and other people who may be in situations where they are measuring a child’s skills or questioning a child about an event.
The manipulation demonstrated is only one example of many manipulations that have been shown to alter children’s performance on the conservation task. Despite the shortcomings of his original methods, Piaget’s proposal that children’s logic and reasoning skills change over development still has ample research support, and his ideas remain widely studied. If anything, this demonstration shows the value of collecting converging evidence across different labs and different populations of children.
Skip to...
Videos from this collection:
Now Playing
Developmental Psychology
61.2K Views
Developmental Psychology
54.1K Views
Developmental Psychology
10.2K Views
Developmental Psychology
54.2K Views
Developmental Psychology
15.0K Views
Developmental Psychology
32.9K Views
Developmental Psychology
13.1K Views
Developmental Psychology
10.4K Views
Developmental Psychology
15.0K Views
Developmental Psychology
5.3K Views
Developmental Psychology
5.2K Views
Developmental Psychology
5.6K Views
Developmental Psychology
6.3K Views
Developmental Psychology
14.3K Views
Developmental Psychology
10.9K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved