Method Article
このプロトコルでは、第二高調波発生のイメージングおよび示差走査熱量測定を使用してウサギの強膜の化学架橋を評価するための手法について説明します。
光化学架橋と組織 (TXL) メソッドを架橋構造蛋白質 (フィブリル型コラーゲン) 療法のために (非酵素的架橋) の化学結合を導入して組織を強化するためのメソッドが含まれます。機械的組織プロパティの変更を誘導するためこのような方法採用されている角膜に進歩的な近視で強膜と同様、円錐角膜などの角膜を薄く (機械的に弱体化) 障害の間伐と後部の弱体化強膜が発生し、体軸の伸長に寄与します。このような組織を強化するための主なターゲット蛋白質は、角膜と強膜の乾燥重量タンパク質の大多数を占めるフィブリル型コラーゲンです。偶然、フィブリル型コラーゲン組織の細胞外スペースの第 2 高調波発生信号の主な源であります。したがって、治療法、架橋により誘起されたものなど、コラーゲン蛋白質の変更可能性があります潜在的検出され、第 2 高調波発生顕微鏡 (SHGM) を使用して量的に表わされます。ソースは、生物医学の広まった使用法を楽しんでいる刺激的な現代のイメージング手法レーザー スキャン顕微鏡システム赤外線励起光結合を使用して信号 SHGM を監視します。したがって、本研究の測定する手段によるサブほぞの空間 (sT) に架橋剤の化学物質の注入、ウサギ強、 ex vivo架橋効果 SHGM 顕微鏡の使用を評価するために行われた、射出はアプローチは眼科臨床プロシージャ中に眼麻酔を引き起こすための標準的な方法です。化学架橋剤、ナトリウム hydroxymethylglycinate (SMG) は、エージェント (Far) を放出するホルムアルデヒドとして知られている化粧品の防腐剤のクラスからです。SMG との反応を伴う強膜の変化した SHG 信号の増加、熱変性温度の変化と相関を評価するための標準的な方法による架橋効果組織です。
近視の進行は仮定することが (光化学および化学)、非酵素的に強膜架橋を通じて治療実験フォーム剥奪 (FD) を増やすことができますコラーゲン酵素架橋ブロックことを考えれば理にかなっている-誘導近視1。Elsheikh とフィリップスの2は最近可能性と標準的な紫外線照射 (UVA) の使用の可能性を議論-リボフラビンを介した光化学架橋 (ドレスデン プロトコル) 省略 (リボフラビン CXL) として近視で軸の伸長を停止する後部強膜安定化。この光化学メソッドは、正常に円錐角膜とレーシックの記事 keratectasia に見られる前部グローブ サーフェス (すなわち、膨らんだ角膜) の不安定化を治療するために使用されています。ただし、強膜のこの CXL プロトコルのアプリケーションが多く大きい組織表面領域を変更する必要性と同様、紫外線 (UV) 光源と後部強膜へのアクセスの難しさに関連する問題によって妨げられています。言われて、CXL アプローチに使用されている視覚的にフォームで体軸の伸長を停止奪わウサギ (瞼板縫合)、後部強膜の複数の領域は、研究3で複数の独立した照射ゾーンが必須。対照的に、聖空間を介して化学安定剤 (すなわち、架橋剤) 注入は、後部強膜、紫外線光源を導入することの必要性を回避するを変更する簡単な方法を表すことができます。この注入法白内障手術4,5,6など眼科処置中に眼麻酔を誘導する便利な方法として知られています。ウォレン サック7は以前グリセルアルデヒド (化学架橋剤ホルムアルデヒド エージェント (Far) 本を解放する概念と似ています) を使用して sT インジェクションの使い方を説明してウサギ強膜と genipin を固くにはFD モルモット8,9の軸方向の長さを制限するために示されています。これらの調査官は、光化学 CXL 法上可溶性化学薬品を使用しての明確な利点を示しています。強膜の架橋 (すなわちTXL) ファールスを含むいくつかのタイプの注射薬剤を使用して10近視で強膜の伸長の進行を食い止めるための可能な治療法を提供できます。
ここで紹介するプロトコル、死体の家兎眼の強膜に sT インジェクションを介して配信されるナトリウム hydroxymethylglycinate (SMG) の化学架橋のソリューションを使用します。我々 は、角膜局所化学架橋以前に類似したプロトコルを実装しています。これらの報告された調査で特に依存効果を架橋濃度は熱変性解析11 によって決定される光化学 CXL の達成もまたがる効果範囲を持つ SMG を使用して得ることができた.
ここで我々 は強膜組織、差動スキャン熱量測定 (DSC)、および第 2 高調波発生顕微鏡 (SHGM) を使用して熱変性する sT 注射を介して配信 SMG の架橋効果を評価するためにプロトコルを説明します。
差分走査熱量測定 (DSC)、熱分析とも呼ばれますを使用して熱変性転移測定、強膜組織は主にそれらはバルクの大部分を構成するので、フィブリル型コラーゲンの性質によって導かれてタンパク質。このメソッドには、コラーゲン分子構造の安定性とコラーゲン線維、主要タンパク質立体構造の安定化架橋結合が評価されます。DSC で加熱中に臨界転移温度は三重らせん、ゼラチンと呼ばれる一般的形成プロセスの上体で、コラーゲン分子の変性の結果が達成されます。この熱変性コラーゲン分子に水素結合を中断され、誘導架橋方法12,13を通して高温にシフトすることができます。このメソッドは、革の意思を含むプロセス、特に生体材料業界で長年にわたり使用されています。ただし、このメソッドは強膜組織の抽出を必要とし、したがって前のヴィヴォ手法として有用することができますのみ。
第二高調波発生顕微鏡 (SHGM) は、非中心対称性分子環境に、特定の物質の非線型光学特性に基づいています。そのような材料は、強烈な光でたとえば光レーザーによって生成される、SHG 信号、周波数 2 倍は入射光を生成します。コラーゲン、微小管、筋ミオシン、SHG 信号を作成する知られている生物学的材料。たとえば、コラーゲン 860 nm の波長の赤外光と興奮は 430 nm の波長の可視範囲の SHG 信号を出力します。第二高調波発生 (SHG) 信号のイメージング、治療コラーゲン架橋を評価するための有望な方法です。それは、組織のコラーゲン線維を放出 SHG 信号1430 年以上知られています。しかし、ごく最近高解像度の画像を取得でした15といったさまざまな組織、腱16皮膚、軟骨17、18血管とコラーゲン ゲル19。
この知識に基づいて、本研究は、SMG は化学的に誘導されるコラーゲンの架橋を通じて強膜で SHG 信号の変化を評価します。強膜の SMG 変更組織コラーゲン線維束 (高次第四紀構造コラーゲン線維から成る) から生成された SHG 信号を増加させるし、もコラーゲンの構造の形態学的変化を生成を示唆します。ファイバー網繊維束」矯正」に反映
そのままザイモグラム ウサギ頭内の死体の家兎眼を使用してすべての手順を行った。ケアと実験動物の使用のためのすべての公共機関や国立のガイドラインが続いていた。
1. 溶液の調製
2. TXL SMG を使用テノン嚢下の注入
3. ティッシュの準備
4. 地域の DSC 分析のため
5. SHG イメージング用
6. 顕微鏡検査のプロトコル
注: 強膜組織のコラーゲンからイメージングの後方散乱 SHG 信号をこのプロトコルはレーザー顕微鏡用にカスタマイズします。
7. DSC プロトコル
注: は、ティッシュの準備が完了したら、地域の DSC 分析または組織イメージング SHGM が実行される後すぐにこの手順に進みます。
8. 画像解析
TXL 架橋効果を評価するための測定法として熱変性温度 (Tm):16 組のウサギの目の合計は、TXL プロシージャのこれらの実験で使用されました。この研究の最初の部分、として死体のウサギの頭の中の sT 領域を通じて SMG 架橋剤の単回投与による架橋効果のローカリゼーションを行った。このタイプの実験は患者の臨床治療との関連性を以来、1 つ以上の場所に注射は強膜の目的の領域を安定させるために必要かもしれない。
基本的な拡散の原則に基づいて予測される効果だった最大注入のサイトで同様に、隣接する領域で、液の濃度によって効果が図 1 aは強膜分野 (赤い中空番号フォントで 1-4) (正方形 (1-16 黒の薄い番号フォントで) にさらに分割) 別の熱変性解析と単一セント注入を施行したの概略位置を表しますカラー マッピングのインデックス。表 1は、その対応するコントロールと比較して各セクター番号の Tm 値の変化を示します。値は、3 つの独立した決定の最小値の計算の平均の標準誤差を含む 40 ミリメートルと 400 ミリメートルの両方の注射のため含まれます。
図 1 bC SMG、40 ミリメートル (図 1 b) と 400 ミリメートル (図 1) の 2 つの異なる濃度を使用して結果を表します。図 1 b、低濃度 40 mM サンプルはスクエア 2 (注射部位) で指摘された Tm の穏やかなシフトを示した。同様のシフトは、隣接する正方形 1 と 3 (明るい青) で見られました。限界のシフトは 4 と 6 および 7 に 9 の挿入された広場から有意差なしの正方形で見られます。注射部位から最も遠いセクターを表されるより低い広場 14 に 16 Tm シフトが認められなかった。
図 1のように、高濃度 (400 mM) は (オレンジの色合いとして示される) 統計的に非常に有意な架橋効果を持っていた。40 mM の低濃度と比較して 400 ミリメートルの効果に大きな差を反映して、関連する小さい標準偏差と p < 0.05 Tm の大きなシフトが観察されました。上のグローブでセクター 1 で最も劇的な効果が認められました。残りの分野について 10 および 14 (した架橋流体のいくつかのトラッキング現象による後方) の正方形の低い効果が認められ, 11、12、13、15、および 16 の正方形で効果が見られない。全体的にみて、架橋効果が 2、3 部門 (すなわち、注射部位から最も遠い場所)、4 で観測された効果のない部門の限界 40 mM サンプルのような。効果の「ゾーン」があったことと架橋剤の sT 注入この種のパターンが期待できることが示唆されました。広域組織の効果を引き起こすためにいくつかの場所で注入の必要性がある可能性があります。
TXL の SMG の 2 つの濃度評価そのまま目で架橋効果の研究も行った。このような強膜の架橋を受けた組織の熱変性解析を行った。TXL の 3 つの異なる濃度 40 を使用して 3.5 h をした時間を架橋 (Tm = 1.2 ± 1.11)、100 (Tm = 2.9 ± 5.12)、400 (Tm = 1.1 ± 14.34) mM SMG。SMG 架橋組織に見られる濃度依存効果があることがわかった。
第二高調波発生 (SHG) TXL 架橋効果を評価する方法としてイメージング:
SHG 顕微鏡画像解析 SHG 信号および繊維束のうねりの画素値の両方です。架橋 (400 mm 40) から濃度の広い範囲は、架橋効果の広い範囲にわたって生じる SHG 信号変化を探検するために使用されました。処理プログラム20フィジー イメージに含まれるヒストグラム解析機能を使用すると、強膜組織で sT インジェクション、40 ミリメートルに 400 ミリメートルを使用して誘導されるもので効果を比較することによって生成される SHG 信号を量的に可能だった。40 mM で平均ピクセル intesities の平均した違いは 66.3 ± 27.7 361.4 ± 28.3 400 mM のサンプル、ほぼ 6 増加と比較していた。これは Tm の対応する増加はまたこれらの条件下で認められたので、組織が相互リンクの増加に対応します。40 mM (図 2 b) と 400 mM (図 2) コントロール (図 2 a) から取得した強膜の代表的な SHG のイメージを図 2に示します。平均の明るさ (輝度) を含む付属のヒストグラム分析も表示されます。分析画像総数: 40 mM およびそのコントロールの 98 用 120400 mM と独自の制御のための 94 の 121。組織イメージング法の深さは、上強膜表面から 10 に 15 μ m だった。多数のイメージ フィールドの平均化に関与して、ヒストグラム解析の結果、架橋効果(図 3)の高い濃度の大きいピクセル強度を制作します。
図 4のように、画像解析も ImageJ プラグイン「ニューロン J''21を使用して、心血管の血管文学から採用する方法で行った。うねり係数 W を推定した [曲線] の長さを = [リニア] 長さと我々 が無処理強対 40 ミリメートルと 400 ミリメートルの架橋強膜減少うねり % によって示されるように線維束の矯正の結果架橋をみ (W % = (W [SMG]-1)/(W[control]-1)、表 2)。40 と 400 ミリメートルの SMG 処理サンプルのうねりの違いは統計的に有意でした。
図 1: ST インジェクション使用 40 と 400 mM SMG を介して TXL 効果のローカリゼーション。
(A) 4 強セクター (番号 1-4 大きい赤中空フォントで)、強膜の模式図正方形に分割 [小さい黒の細いフォントの番号 1-16] (スケール描画されない) 熱分析を施行しました。注射部位は、セクター 1 で中心部にある広場 (広場 2) に対応しました。熱変性架橋 400 mM SMG (1 b) 40 mM SMG と TXL と(1 C)の効果。色分け(D)は(B)と(C)の温度スケール伝説を。この図は、アクセス許可22Zyablitskayaらから変更されています。この図の拡大版を表示するのにはここをクリックしてください。
図 2: SHG の濃度依存の増加の代表的な画像信号の明るさレベル TXL 強膜の sT インジェクションで SMG を使用して次の生産前のヴィヴォ.SMG の濃度は 40 mM (B)と(C) 400 mM として表示されます。各画像には、50 μ m スケール (右下隅) バーと平均画素の輝度値 (右隅) の絶対値が含まれています。この図は、アクセス許可22Zyablitskayaらから変更されています。この図の拡大版を表示するのにはここをクリックしてください。
図 3: 40 400 mM SMG ソリューションと sT インジェクション (TXL) を介して架橋強そのまま地球儀 (同じウサギの頭から対コントロール) と比較すると SHG 信号ピクセル強度の変化 (Δ) のバー グラフ。平均値の標準誤差で平均値: 66 ± 27.7 40 ミリメートルと 400 ミリメートルのための 361 ± 28.3。この図は、アクセス許可22Zyablitskayaらから変更されています。この図の拡大版を表示するのにはここをクリックしてください。
図 4: 繊維うねり解析 (直線によって表される) の例です。50 μ m スケール (右下隅) バーと 40 mM SMG 濃度コントロール サンプルの画像です。この図は、Zyablitskayaらから変更されています。許可22。この図の拡大版を表示するのにはここをクリックしてください。
図 5: ST インジェクションの略図。エリア番号の 1-3 は、図 1 aに表示される領域に対応します。この図の拡大版を表示するのにはここをクリックしてください。
±Δ Tm | ||
エリア | 40 mM | 400 mM |
1 | 3.4 ±2.8 | 20.5 ± 0.6 |
2 | 3.4 ±0.53 | 19.58 ± 1.5 |
3 | 2.5 ±2.47 | 17.99 ±3.06 |
4 | 0.72 ± 0.9 | 20.36 ±0.19 |
5 | 0.85 ±0.55 | れた 19.11 ±1.33 |
6 | 0.52 ±1.35 | 18.66 ±4.1 |
7 | 0.78 ハーフブリッジコンバーター | 18.44 ±2.8 |
8 | 0.56 発熱量 | 17.77 ±2.69 |
9 | 0.22 ± 0.6 | 18.92 ±2.6 |
10 | 0.46 ± 0 | 8.75 ±10.56 |
11 | 0.47 0.18 | 0.63 ±1.84 |
12 | 0.11 ± 0.08 | 0.66 ±1.52 |
13 | 0.08 0.05 | 0.71 ±2.17 |
14 | 0.22 ±0.7 | 5.71 ±0.29 |
15 | 0.32 ± 0.2 | 0.29 ±0.7 |
16 | 0.24 ±0.73 | 0.26 ±0.79 |
表 1:DSC は TXL 効果研究の局在化を結果します。サンプリングしたセクターごとに標準誤差を熱溶融温度 (ΔTm) の変化は、図 1 aに示されています。各値は対コントロール Tm ascompared の相違として表現されるが、3 の独立した決定の最小値の平均であります。
SMG、mM | うねり | うねり % | [0 mM SMG] 対 t 検定 |
0 | 1.106 ± 0.044 | 100 | |
40 | 1.067 ± 0.017 | 63 | p < 0.02 |
400 | 1.059 ± 0.009 | 55 | p < 0.003 |
非線形光ファイバー | 1.000 | 0 | |
(理論値) |
表 2.繊維うねり解析の結果。ニューロン J ソフトウェアを使用して繊維のうねりの度の TXL 注入部から SHG 画像を行った。10 繊維はそれぞれのイメージから選ばれ、合計約 100 繊維うねり度分析を行った。平均値平均値の標準誤差に含まれます。
コラーゲン架橋強、トリートメントを架橋用監視ツールとしてこのテクニックを使用しての将来の可能性を高める効果の評価方法として SHG 信号顕微鏡の使用を支持する証拠が示されている実験を行ったコラーゲン蛋白質をターゲットします。注記のうち、楽器は既にこの SHG 信号をキャプチャすることができます潜在的臨床使用中です。この楽器がイメージングの皮膚皮膚の真皮用では主に、イメージ角膜と強膜23に正常にそれ使用されています。
同一スキャンおよびコントロールを比較するときの条件を画像処理を維持するために必要なサンプルを扱います。強膜組織におけるコラーゲンの顕微鏡は蛍光顕微鏡多光子イメージングとの互換性を必要とする第 2 高調波発生パルス赤外レーザー 800-900 nm の波長範囲と、GaAsP など高感度検出器で可変非 descanned (NDD) 検出器。本稿で説明するガイドラインは、開始地点です。新しい実験用または別のシステム条件を決定する必要があります。
角膜と強膜も評価されています同時にこの技術24,25,26,27を用いた研究で。前方と後方の両方の方向で SHG 信号を反映することを知って、いくつかの研究は単独でその本来の状態28,29,30,31、角膜組織を検討しています。 32,33,34と円錐角膜35,36同様 CXL (後述) として続いています。これらの研究の結果は、角膜の透明性と前方散乱システムのモニターをストライクに組織を光が通過するという事実を与えられた理にかなって前方の散乱方向の角膜の信号を最適化することを示します。通常、SHG 信号青の目に見える範囲では、目の強膜のような散乱組織を通過するとき大幅削減されます。結果として、前方散乱 SHG の検出は、50 μ m またはで厚みを薄くし、特殊な光のセットアップと同様の組織の薄いセクションを必要でしょう。対照的に、ティッシュなし蛍光顕微鏡の通常の光パスを後方散乱信号を取り込むことができます、したがってこのモードでは、30-40 μ m の深さまでそのまま強膜組織におけるコラーゲンをイメージングするとき、最寄り。本研究では信号密度濃度依存増加を指摘しました。それは、かなり可能、ただし、TXL は強膜のより深い層の追加と同様の効果を持っていたかもしれない発音効果の詳細にできるし、特に高濃度でより深い層に拡張します。ただし、穿、限られた SHG 信号強膜で、この初期の研究の目的のため、最も表面的な強膜 (15 μ m の深さ) から得られた最高の品質の画像で動作するように選びました。将来的に研究、なぜでも大きな違いがない重要な追加情報を提供することがありますこれ以下の TXL メソッド依存効果観察 40 と 400 mM 扱われたサンプルの間の深さを検討いたします。
さらに、リボフラビン誘導 CXL 組織架橋の評価の SHG の利用に関してに、SHG 顕微鏡イメージング次リボフラビン角膜の CXL をいくつかのグループ37,38,39によって報告されています。,40,41. スティーブンらによる調査37CXL 法を用いた角膜の安定化は、「均質化」信号の損失組織「ひだ '' か '' 波動 '' の非架橋のサンプルで見られる結果になったこれらの種類の変更、ただしも認めた技術工芸品の可能性を高める角膜の SHG 信号に眼圧の変化の影響評価研究高い順序繊維束/ラメラ組織立場と同様、線維、組織的から強膜、角膜はかなり異なっているし、電子顕微鏡を用いた研究からその違いについてはあまり知られています。2 つの組織は、線維の直径分布 (強膜、角膜と変数径線維の小さな均一線維) と (角膜と強膜の変数で統一) の間隔間の線維が含まれていますパッキング、線維について異なります。同様に、ラメラ シート (角膜) 対のファイバー ・ バンドル (強) により高い順序構成は全く異なるです。このような構造的な違いは、これら 2 つの組織によって生成される SHG 信号に反映されます。したがって、架橋による変化は異なる平行方法で SHG 信号を変更可能性があります。つまり、「矯正」強膜線維のこの研究と文献等で報告された角膜における信号の「均質化」において変更を架橋コラーゲンの両方結果だった。したがって、角膜に「均質化」効果のいくつかの方法かもしれないここで報告されている強膜の「矯正」の効果に似ています。
TXL によって生成されるこの矯正効果、メカニズムは、現在の調査に基づく明確です。1 つの可能性は機械的に「ロード」位置には組織修正されたこと何らかの形 '' '' かもしれない。誘導の概念をサポートすると「線維と繊維の安定化」が発生していますいた。IOP だった前および次の sT インジェクションを監視し、安定しているので可能性が高い眼圧の変化はこの効果に貢献しなかった。全体的に、これらの観察の意義が明確でないと、さらなる研究が必要になります。注記のうち、独立したイメージング技術のブリルアン顕微鏡42などが示されている定量的な対策を提供する (せん断弾性係数によって決まります)、架橋の CXL 光化学を次に有用かもしれない SHG との調査結果を確認します。本研究ではイメージング。しかし、43強膜など高散乱組織とその使用技術的な修正を必要とし、架橋の強膜組織で検証されていない注意する必要があります。
レーザーの偏光 SHG 顕微鏡は、重要な課題。レーザー光は直線偏光し、各コラーゲン繊維を xy 平面上にいくつかの角度で SHG 信号伝播の方向に垂直の指向します。したがって、xy 平面で繊維も合わせ、偏光レーザー光に直角に交わりますが生成されます (すなわち、z 平面)、入射光に平行を含め、他の角度でそれらより高い SHG 信号になります、最低 SHG 信号 (破壊的な干渉)。強膜組織に関してコラーゲン繊維は、微細なレベルで様々 な角度で配向最寄りの解剖学的線維方向の存在が知られているは、世界中の場所に基づいています。したがって、以来、生産された SHG 信号は、各ファイバーの xy 平面の角度によって異なりますが、全体的な信号よりより少しであるすべてのコラーゲン線維が (腱などの組織で同じ角度に正確に合わせる場合に生成されること、たとえば)。したがって、イメージング対象サンプルの性質のため、この研究では偏波の方向は意図的に特定できませんでしたが研究全体で一貫した保たれました。さらに、我々 は組織を取得するために世話から扱われ、繊維方向のサンプル間の相違点を最小限に抑えることと同一の強膜領域から地球儀を制御します。最後に、強度の値を得るために以上 100 枚サンプルを分析しました。この広範な評価は登録されている可能性があります任意の異常な SHG 信号が正規化する必要があります。という、可能です「繊維矯正」の結果として我々 が"の焦点面の"繊維は、SHG の増加に貢献したかもしれないより大きい割合 (上記) 架橋のサンプルで観察した信号だけでなく、増加大きく xy 平面配置から SHG 信号。両方の可能性は架橋の誘導効果の現れでしょう。
SMG の sT 注入 (Tm) による変化を架橋の地域分析を行った。予想通り、架橋効果のレベルは注入の領域に集中していた。架橋の影響はほとんどありませんが注射、超音波局在44,で示すように、次の sT インジェクション効果の局在について知られているものと一致してから (最も遠い距離) の真向かいの地域に認められた45と計算された断層レントゲン写真撮影46。
最後に、架橋治療や近視、角膜のコラーゲンが架橋結合を見つけることです普及鱗片の縁変性 (PMD)、ポスト LASIK keratectasias、円錐角膜など角膜の不安定化としての治療で、屈折矯正手術47への補助。架橋の角膜疾患の治療の成功は、目と、特に、強、高度近視で2までさかのぼるコンセプトの軸方向の伸びを制限するためにこの処置のアプローチを適用した探査につながっている、治療の架橋概念48,49の非常に初期の段階。
著者が明らかに何もありません。
著者はありがとう sT インジェクション; 相談 Tongalp Tezel、MD は、テレサ Swayne、PhD、SHG 顕微鏡に関する相談デザインと生物統計学のリソースとコロンビア大学医療センターでアーヴィングの研究所の統計中核施設からジミー ビンズオン。
失明を防ぐために研究や健康補助金傘下 UL1RR024156 の国家機関、ネイ P30 EY019007、NCI P30 CA013696、ネイ R01EY020495 (DCP) 部分的にサポートされています。コロンビア大学関連の知的財産を所有している: 米国発行特許 no: 8,466,203 および no: 9,125,856。国際特許出願中: PCT/US2015/020276。
画像を集めた、共焦点、およびコロンビア大学、NIH 支えのハーバート ・ アーヴィング総合がんセンターの専門顕微鏡共有リソースに付与 #P30 CA013696 (国立癌研究所)。NIH で共焦点顕微鏡を購入した #S10 RR025686 を与えます。
Name | Company | Catalog Number | Comments |
MILLI-Q SYNTHESIS A10 120V | EMD Millipore, Massachusetts, USA | Double distilled, deionized water. - protocol step 1.1.1 | |
Sodium hydroxymethylglycinate | Tyger Chemicals Scientific, Inc. Ewing, NJ, USA | Crosslinking reagent - protocol step 1.1.2 | |
Injection needle with luer-lock syringe | BD Eclipse, NJ, USA | Syringe for sub tenon injection. - protocol step 2.1 | |
Rabbit head | La Granja poultry | Outbred | Rabbit head separated and delivered within 1 hour postmortem. - protocol step 2.2 |
Tono-pen | Reichter Technologies Depew, NY | IOP measurements - protocol step 2.4 | |
DSC 6000 Autosampler | Perkin-Elmer Waltham, MA, USA | Thermal denaturation analyzer - protocol step 7.4 | |
Pyris software | Perkin-Elmer, Waltham, MA, USA | Ver 11.0 | protocol step 7.5 |
CFI75 Apochromat LWD 25X/1.10 W MP | Nikon Instruments, Melville, NY, USA | A water immersionn objective with high IR transmittance with a working distance of 2.0 mm - protocol step 8.1.1. | |
GenTeal | Alcon, Fort Worth, TX | B000URVDQ8 | Water-based gel used as objective immersion medium instead of water to prevent evaporation - 8.1.1 |
Chameleon Vision II | Coherent, Santa Clara,CA, USA | Ti:Sapphire pulsed laser with a 140 fs pulse width at 80 MHz and a tunable range from 680 nm to 1080 nm. - protocol step 8.1.11 | |
AttoFluor cell chamber | Thermo Fisher Scientific Inc | A7816 | Fixation of the cover slip - protocol step 8.1.3 |
25-mm round coverslips, #1.5 | Neuvitro Corporation, Vancouver, WA, USA | GG-25-1.5 | protocol step 8.1.3 |
Eclipse Ti-E | Nikon Instruments, Melville, NY, USA | protocol step 8.1.4. | |
Non-descanned (NDD) GaAsP detector | Nikon Instruments, Melville, NY, USA | Equipped with a 400-450 nm band pass filter - protocol step 8.1.7 | |
A1R-MP laser scanning system | Nikon Instruments, Melville, NY, USA | Compatible with infrared (IR) multi-photon excitation. - protocol step 8.1.8 | |
NIS Elements software | Nikon Instruments, Melville, NY, USA | Ver 4.3 | refered to as "software" in the text - protocol step 8.1.9 |
Fiji/ImageJ | National Institute of Health | protocol step 9.1.2 | |
NeuronJ | Eric Meijering, Erasmus University Medical Center, Rotterdam, The Netherlands | https://imagescience.org/meijering/software/neuronj/, for protocol step 9.2.2 | |
Microsoft Excel | Microsoft Corporation, Redmond, WA, USA | Ver 14 | protocol step 9.2.8 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved