Method Article
コンタクトレンズ(のCL)および他の眼関連のアプリケーションを評価するための現在のin vitroモデルは厳しく制限されています。提示眼のプラットフォームは、生理的な涙の流れ、涙ボリューム、空気暴露と機械的摩耗をシミュレートします。このシステムは、非常に汎用性とのCLで分析インビトロで種々に適用することができます。
Currently, in vitro evaluations of contact lenses (CLs) for drug delivery are typically performed in large volume vials,1-6 which fail to mimic physiological tear volumes.7 The traditional model also lacks the natural tear flow component and the blinking reflex, both of which are defining factors of the ocular environment. The development of a novel model is described in this study, which consists of a unique 2-piece design, eyeball and eyelid piece, capable of mimicking physiological tear volume. The models are created from 3-D printed molds (Polytetrafluoroethylene or Teflon molds), which can be used to generate eye models from various polymers, such as polydimethylsiloxane (PDMS) and agar. Further modifications to the eye pieces, such as the integration of an explanted human or animal cornea or human corneal construct, will permit for more complex in vitro ocular studies. A commercial microfluidic syringe pump is integrated with the platform to emulate physiological tear secretion. Air exposure and mechanical wear are achieved using two mechanical actuators, of which one moves the eyelid piece laterally, and the other moves the eyeballeyepiece circularly. The model has been used to evaluate CLs for drug delivery and deposition of tear components on CLs.
コンタクトレンズ(CL)アリーナ内の関心のある二つの重要な領域は、不快感や小説CLアプリケーションの開発が含まれています。 CLの不快感を根底にあるメカニズムを解明することは、新規の開発8。何十年もの間、フィールドの目を逃れている問題であるような薬物送達デバイス1,3,9およびバイオセンサーなどの機能のCL、10月12日には、関心の領域ですかなりの潜在的な市場と。両方の状況では、 インビトロモデルにおける高度な開発フェーズの間、適切なレンズ材料又は設計特性を選択することを支援するための関連情報を提供するであろう。残念ながら、のCLおよび他の眼関連のアプリケーションを評価するためのin vitroモデルの電流は比較的原油と洗練されていないです。伝統的に、涙液層の堆積または薬物送達を評価するin vitroでのCLの研究は、固定された流体体積を含む静的な、大容量のバイアル中で行われるのGreATLY生理量を超えています。さらに、この単純なモデルは、自然の涙流れ成分と点滅反射を欠いている眼の環境の要因を定義しているどちらも。
洗練されたの開発は、生理学的に関連の眼」モデルは、「学際的なアプローチを必要とし、実質的なin vivoでの検証が必要になります。これらの理由から、私たちのin vitro眼モデルのための基本的な枠組みは、モデルが継続的に将来のアップグレードおよび変調によって改善することができるように、汎用性の高いです。現在までに、モデルは、涙液量、涙液の流れ、機械的摩耗及び空気曝露をシミュレートすることが可能です。その目的は、in vivoおよびex vivo観察中に予測し、無料で意味のある結果を提供するin vitroモデルを作成することです。
すべての実験は、大学のウォータールーの動物実験倫理委員会によって概説関連するすべてのガイドラインに従っやコンプライアンスに完成しました。ウシ目が寛大に地元の食肉処理場から寄贈されています。
1.アイモデル
2.点滅プラットフォーム
機械工場から3-D印刷から得られる合成目の鋳型は、 図1に示されている。これらの型は、所望の特性を有する接眼レンズを製造するために、例えば、アガロースPDMSとのようなポリマーの様々な使用することができます。マイクロ流体シリンジポンプと眼モデルプラットフォームの合図アセンブリは、図2に示されている。プラットフォームは、内とまぶた駒の動きうち横を通って眼球片の回転、空気暴露を介して機械的摩耗をシミュレートします。涙液は、所望の流量でマイクロ流体ポンプから瞼に注入され、フロースルー液を12ウェルプレートに回収することができます。
ウシレンズの切開、及びPDMSの接眼レンズに装着するための手順は、図3に示されている。過剰な組織を眼から分離し、廃棄し、除去しました結膜の。角膜の除去は、角膜輪部付近の強膜切開から始まる。 図4は、様々なin vitroでの分析のために使用することができる接眼レンズの多様性を示しています。図示搭載眼球片PDMS、寒天、及びPDMSの眼球片に取り付けられた生体外のウシ角膜から合成されます。
図5は、CLSにから、モキシフロキサシン、抗生物質の放出を評価する研究を示している。従来のバイアルモデルで測定した場合18、薬物放出がプラトー期に続いて、最初の2時間以内に起こります。これとは対照的に、新規な眼モデルは、最大24時間。18のCLでのコレステロールの沈着を評価する研究は、図6に示されているために薬物放出が遅く、持続可能であることを示している。研究中のコレステロールは蛍光NBDの形でタグ付けされました - コレステロール(7-nitrobenz -2-オキサ-1,3-ジアゾール-4-イル - コレステロール)、およびdepositionレーザー走査型共焦点顕微鏡を用いて画像化しました。結果は、堆積試験をバイアル中で実行されるときに眼のモデルと比較して、実質的な差異があることを示しています。
図1.接眼レンズ金型。(A)機械工場から眼球ピース金型。 3-D印刷から(B)目蓋のモールド。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図2 のin vitro 眼のプラットフォームを提供します。(A)円形運動は機械的摩耗をシミュレートします。 (B)横方向の動きは、断続的な空気を作り出します暴露。 (C)まぶたに涙液の注入。 (D)ウェルプレートを収集する。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図3.解剖およびウシ角膜の取り込み。過剰な組織の(A)の除去。 (B)結膜の除去。 (C)角膜縁領域に切開。 (D)切除された角膜が格納されているか、PDMS眼球片に装着することができる。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図4.サンプル・接眼レンズ。コンタクトレンズとPDMSの目片のサンプル、寒天アイピース、およびex vivoウシ角膜取り付けられたアイピース。 この図の拡大版をご覧になるにはこちらをクリックしてください。
in vitroでの 眼のプラットフォームを 使用して図5.ドラッグデリバリー 。モキシフロキサシンのリリース(A)大容量静的バイアルおよび(B)から、毎日の使い捨てコンタクトレンズからのビジョンにおける研究のための協会の許可を得て眼モデル(再印刷と眼科)。18全てのデータは平均値±標準偏差として報告されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
設計と製造の金型(1.1節)、プラットフォームアセンブリ(セクション2.2.1-2.2.3)、および実験操作を監視する(セクション2.2.4-2.2.7:特別な注意を必要とするプロトコル内の3つの重要なステップがあります。 )。カビ(セクション1.1)の設計と生産の面では、眼球の作品は、人間の角膜の寸法に応じて設計されるべきです。眼球片が完全に商業コンタクトレンズ(CL)に収まるように作成することができる前に、しかし、金型の複数のプロトタイプを必要とし得ます。眼球と瞼片CLが存在するときに涙液が全眼モデルを通してスムーズに流れを保証するために接触している場合に加えて、250μmのニーズが維持されます。この距離は、将来の反復で変更することができるが、CLにフィットするのに十分な間隔を可能にするために、150ミクロン未満であってはなりません。プラットフォームアセンブリ(セクション2.2.1-2.2.3)は眼球とまぶた作品はコンタに入って来るように細心の注意が必要ですまばたき運動中のct。接眼レンズが完全に接触していない場合は、閉じたまぶたのシミュレーションと機械的擦れは失敗します。オペレータは、眼球とまぶたの両方が接触している、およびプログラムとしてその擦れが発生したことを確認するために、数サイクルのために運動しているプラットフォームを観察する必要があります。現在のプラットフォームは1ヶ月以上継続的に実行するように設計されていますが、実験(セクション2.2.4-2.2.7)を実行している場合、オペレータは、常にシステムの安定性に24時間毎にチェックする必要があります。現在のプラットフォームは、温度や湿度のコントロールを持っていない、これらのパラメータの変動がのCLを干上がる可能性があるので、これは重要です。この問題が発生した場合、制御された湿度と温度のチャンバ内の眼モデルを配置します。また、薬物送達実験のために、収集したフロースルー液は、分析または試料の有意な蒸発を回避するために、少なくとも2時間毎に保存されるべきです。
提示の2つの制限は現在ありません眼モデル。最初の制限は、周囲の環境への露出に関してです。アイピースが制御チャンバ内に封入されていないため、現在、このような作業領域内の温度や湿度などの変化は、実験の様々な側面に影響を与えます。環境があまりにも乾燥している場合たとえば、その後CLSが速く枯渇と眼球片から分離することができ、またはフロースルー液が蒸発する可能性があります。この問題に対処するために、将来の反復は、制御された温度と湿度チャンバー内で眼モデルを収容します。第2の制限は、複雑さの眼球ピースに関係します。現在、接眼レンズは本当に角膜表面特性を表すどちらもアガロースPDMSか、のいずれかからなる、簡単です。今後の課題は、より近く模倣目モデル角膜表面構造を生成することを目指します。
試験管眼の研究では 、一般的にin vivoでの研究に先行テスト段階と見られています。しかしながら、そうでない場合は単独のin vivo試験から得ることができない重要な洞察を提供し、in vitroでの研究はまた、in vivoデータに相補的であり得ることを心に留めておくことが重要です。残念ながら、テストのCLのためのin vitroモデルで現在は初歩的であり、十分に生体内環境を模倣するために、いくつかの主要なコンポーネントが不足しています。例えば、in vitroでの CLの研究は大幅に7.0±2μlので生理的な涙のボリュームを超えたリン酸緩衝生理食塩水、1-6 2-5 mlを含むバイアル中で行われている。7また、眼の環境の二つの重要な要因、自然な涙の流れは、点滅反射、単純な静的バイアルモデルは存在しません。従来のバイアルモデルの制限は、研究者によって認識され、試みは、マイクロ流体涙補充成分2を含むことによって、眼の環境をシミュレートするインビトロ眼モデルでユニークを作成するためになされています0-24および/ または断続的な空気暴露。25,26は、驚くべきことに 、これらの実験から得られた結果は、従来のバイアルモデルで得られたものよりも非常に異なっている、とより密接に生体内データに似ていることがあります。20〜25をこのように、開発していません調べるために、 インビトロ眼モデルにおける複雑なCLSが眼表面とレンズ材料との相互作用に関する新たな洞察を提供し、新しい材料や今後数十年でのCLのための新たなアプリケーションの開発を容易にするのに役立ちます。
ほぼ間違いなく、in vitroの眼モデルの中で最も議論側面の一つは、目が、それはのCLからの薬物送達に来るとき、特に重要である無限のシンクを、似ているかどうかです。無限シンク条件下では、周囲の溶液の量は、薬物放出は、薬物の溶解度に影響されないように、薬物の飽和量よりも有意に高い。ACCEとしてバイアル27支持者ptable眼モデル角膜、結膜、および無限のシンクとしての機能を眼組織を一緒に囲むと主張しています。理論的にはこれが本当かもしれないが、薬は最初の涙液に溶解しなければなりません。この律速段階は、おそらくシンク条件ではなく、両方の涙液量に依存することが、我々のモデルによってシミュレートとして流れます。
提示されたモデルの一意のIDは、涙液膜をエミュレートする能力にあります。ツーピースデザイン、「角膜/強膜」眼球および「まぶた」を採用することにより、両方の部分が接触したとき眼球片を横切る涙液膜の均一に広がる薄い層を作成することが可能です。さらに、眼表面をシミュレートするために、機械的な摩耗や空気暴露は、2つの機械的アクチュエータを介してモデルに組み込まれています。まぶた片が横方向に移動すると、それは目と断続的な空気暴露の閉鎖をシミュレートします。眼球の回転は、ドゥリン生産機械的摩耗をシミュレート点滅グラム。システムは、生理的な流速で、涙液または他の任意の所望の流量で眼モデルを注入するマイクロ流体ポンプに連結されています。涙液膜は、2片が接触するたびに形成されており、2枚の分離時に涙ブレークアップが発生します。
目的は、様々なin vitroでの解析のためのCLを評価するための万能試験プラットフォームを作成することです。汎用性であるために、眼球の部分は、例えば、ポリジメチルシロキサン(PDMS)または寒天などの様々なポリマーから合成することができます。単純な眼の研究のために、それぞれ疎水性および親水性の表面を表し、これらのポリマーは、十分であろう。より複雑な分析が必要とされるが、例えば、眼の薬物の浸透や毒性研究のために、目片をさらに変更する必要があります。例えば図示のようにex vivoで角膜を含めるようにモデルにこれらの追加の改変は、比較的実現可能です。しかし、さらなる検証研究必要とされ、今後の研究は、in vivoモデルと比較することにより、このモデルの有効性を改善することを目指します。
著者らは、開示することは何もありません。
著者らは、高度な眼科材料の開発のための資金調達源NSERC 20/20ネットワークを承認したいと思います。
Name | Company | Catalog Number | Comments |
Arduino Uno R3 (Atmega328 - assembled) | Adafruit | 50 | Board |
Stepper motor | Adafruit | 324 | Motor and Motor shield |
Equal Leg Coupler 1.6mm 1/16" | VWR | CA11009-280 | 50 pcs of tube connector |
Tubing PT/SIL 1/16"x1/8" | VWR | 16211-316 | Case of 50feet |
PDMS | Dow Corning | Sylgard 184 Solar Cell Encapsulation | |
Agarose, Type 1-A, low EEO | Sigma-Aldrich | A0169-25G | |
PHD UltraTM | Harvard Apparatus | 703006 | MicroFluidic Pump |
Bovine cornea | Cargill, Guelph/ON | ||
Soldidworks | Dassault Systemes | Software | |
3-D printing | University of Waterloo - 3D Print Centre | ||
Dissection tools | Fine Science Tools | General dissection tools | |
Medium 199 | Sigma-Aldrich | Culture medium storage for cornea | |
Fetal bovine serum | Thermo Fisher | Add to culture medium, 3% total volume |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
ISSN 2578-2614
Copyright © 2023 MyJoVE Corporation. All rights reserved
当社はcookieを使用しています。
「続行」をクリックすることで、当社のcookieへの同意となります。