Method Article
This protocol describes an easy method to extract and fractionate transcripts from plant tissues on the basis of the number of bound ribosomes. It allows a global estimate of translation activity and the determination of the translational status of specific mRNAs.
Translation of mRNA to protein is a fundamental and highly regulated biological process. Polysome profiling is considered as a gold standard for the analysis of translational regulation. The method described here is an easy and economical way for fractionating polysomes from various plant tissues. A sucrose gradient is made without the need for a gradient maker by sequentially freezing each layer. Cytosolic extracts are then prepared in a buffer containing cycloheximide and chloramphenicol to immobilize the cytosolic and chloroplastic ribosomes to mRNA and are loaded onto the sucrose gradient. After centrifugation, six fractions are directly collected from the bottom to the top of the gradient, without piercing the ultracentrifugation tube. During collection, the absorbance at 260 nm is read continuously to generate a polysome profile that gives a snapshot of global translational activity. Fractions are then pooled to prepare three different mRNA populations: the polysomes, mRNAs bound to several ribosomes; the monosomes, mRNAs bound to one ribosome; and mRNAs that are not bound to ribosomes. mRNAs are then extracted. This protocol has been validated for different plants and tissues including Arabidopsis thaliana seedlings and adult plants, Nicotiana benthamiana, Solanum lycopersicum, and Oryza sativa leaves.
蛋白质的合成是在所有单元电池1的基本和大力昂贵的过程。首先,细胞必须在生产翻译机器中,核糖体的投资能量。例如,一个活跃分裂的酵母细胞产生每分钟高达2000核糖体。这样的生产需要高达总转录活性的60%,到小区2的总剪接活性的90%。此外,需要能量的氨基酸,氨酰tRNA和肽键的合成。在植物中,从三磷酸腺苷3 4.5至5.9分子添加一个氨基酸的肽链的成本。因此,它是不奇怪的mRNA的蛋白质的翻译调控的主要部位,特别是当它涉及到处理变化的环境条件。
翻译起始的一步,那就是与一个核糖体mRNA的关联,是调控的主要对象翻译4。作为翻译的调节的结果,以及其他转录后调控的步骤中,只有40%的蛋白质浓度的变化可通过mRNA的丰度5,6进行说明。因此,总mRNA的研究给出了关于蛋白丰度比较差的信息。另一方面,mRNA的核糖体与关联给出更好地了解蛋白质丰度通过给访问那些参与翻译的mRNA。积极翻译的mRNA与核糖体的几个称为多聚核糖体的结构有关。相反,翻译不好的mRNA将只有一个核糖体(monosome)相关联。因此,一个mRNA的转译状态可以通过监视与核糖体7的关联进行评估。
这个协议描述从六个日龄拟南芥幼苗,RNA的随后分离多聚核糖体的分离,结果的分析。宝lysomes和monosomes通过蔗糖密度梯度分离。梯度被收集成六个馏分。一些级分的汇集,以获得三个阱分离的部分:多核糖体,monosomes和轻馏分(以下称为上清液),其中包含不与核糖体相关的自由60S和40S核糖体亚基和的mRNA。全局翻译活性可以通过产生一个多核糖/ monosome比率,这是由该曲线下的面积的积分确定来估计,并通过比较多聚核糖体轮廓。的mRNA和蛋白质,然后从不同的级分提取并用于通过RT-PCR,定量RT-PCR,Northern印迹,微阵列,蛋白质印迹或蛋白质组学分析。该协议已经过验证的其他植物和组织。
执行此协议所需的设备在大多数实验室通常发现:没有必要为一个梯度壶。添加下一个防止冻结之前每层■从层的任意组合或干扰。无管穿孔被用于其可以通过在梯度的玻璃毛细管的浸没来实现梯度集合。因此,昂贵的超速离心管保持完好,并且可以重复使用很多次。总的来说,这使得本协议核糖体分析一个简单而廉价的方法。
1. 20至50%(重量/体积)蔗糖梯度制备
注意:梯度在13.2毫升超速离心管制成的蔗糖的4层(50%,35%和2层的20%)。在我们的经验,浇注在两个单独的层的20%蔗糖大大提高多核糖制剂的质量。
最终蔗糖浓度 | 蔗糖2M(毫升) | 盐溶液1X(毫升) | 最终卷。 (毫升) |
50% | 8.8 | 3.2 | 12 |
35% | 12.9 | 12.1 | 25 |
20% | 7.4 | 17.6 | 25 |
20% | 5.8 | 14.2 | 20 |
表1.蔗糖溶液的稀释液准备六梯度。
蔗糖层 | 50% | 35% | 20% | 20% |
卷。 (毫升) | 1.85 | 3.65 | 3.6五 | 1.35 |
表2.卷每一层的蔗糖溶液。
2.胞浆提取物的制备
注意:我们荐最终使用每生物样品两个梯度。 300毫克是植物材料的最佳量为6天龄的拟南芥幼苗时,制备两个梯度。当用量少翻译活性的组织工作,植物材料的量可提高到600毫克。
3.多核糖体剖面
图1.梯度收集系统。紫外比色皿由聚氯乙烯管连接到下降到梯度的底部的玻璃毛细管。梯度通过系统由于蠕动泵的进展。 OD 260被连续读取和2ml收集级分。 请点击此处查看大图这个数字。
4. RNA提取
5.数据分析
图2代表多核糖体轮廓。 拟南芥野生型(wt,生态型Col-0中)和突变体幼苗生长下一天的光周期(16小时光照,8小时黑暗)上半MS培养基六天。答:从重量苗生多聚核糖体轮廓。 B:由突变苗生多聚核糖体轮廓。 C:多核糖和monosomes由曲线D下的面积的积分的百分比的测定:多核糖PROFI莱归到monosome高峰。 请点击此处查看该图的放大版本。
在文献中,多核糖轮廓通常由轻馏分显示出重馏分作为梯度被收集的方式所致,即从顶部至底部。因为在这里描述的方案的梯度从底部到顶部收集,我们显示轮廓开始与重馏分(多核糖体),并转到所述轻馏分(游离核糖体亚基和的RNA)( 图2A)。然后我们收集每个梯度在六个2毫升馏分,但如果多核糖体的内容更详细的分析,必须进行更小的级分可以被收集。
合并和规范曲线的峰值monosome( 图2D)允许来自不同线或生长条件分布的比较。这提供了多聚核糖体独立引发的水平的相对量的信息。另一种方式为nalyze型材是计算曲线下的面积,从而,可以确定的mRNA与任monosomes或多核糖体( 图2C)相关联的相对数量。这个比例是特定的植物和生长条件。然而,这种方法可能不是很差翻译活性的组织的情况下,相关的。
我们已经使用了A.这种方法拟南芥全苗,老少花环,以及为N.本塞姆氏 ( 图3C), 的S.lycopersicum( 图3E)和O.苜蓿叶( 图3D)。轮廓形状取决于生长条件,植物年龄和分析的组织中。在这里,我们使用A.拟南芥 6天老苗。在此阶段,平移活性高,且分布图显示井字形的峰( 图2A和B)。这也是这种情况当A.拟南芥花被使用( 图3A)。当使用4周龄A.拟南芥莲座( 图3B),将样品大多含有充分发达成年叶,其中细胞不分裂。因此,多核糖和monosomes的总量更低。该曲线显示越少,但仍远状多核糖体峰。旁边monosome高峰,肩部显示了大量的免费60S核糖体亚基。与其它种类的植物或组织,所述多核糖体的峰可能是勉强可见。这是使用30天O.时的情况苜蓿叶( 图3D)。即使当mRNA的参与翻译量非常低(无多核糖峰可以在简档中可以看出),该monosome峰的存在表明该分馏被正确完成,那的mRNA可以从作进一步分析的级分被进一步萃取。提取的RNA的质量的质量通过琼脂糖凝胶电泳评估( 翁>图4)。的25S和18S胞质核糖体RNA应是凝胶上清晰可见。当RNA从绿色组织10所提取相应的叶绿体核糖体RNA低频段也应该是可见的。
图3. 多聚核糖体从不同的植物材料和品种的配置文件。 (A) 拟南芥花(300毫克),(B) 拟南芥 4周龄花环(600毫克),(C) 本塞姆氏烟草 (40日龄短日照生长的植物嫩叶- 300毫克),(D) 水稻 ( 30日龄植物的叶子- 300毫克),(E) 龙lycopersicum(35日龄短日照生长的植物嫩叶- 300毫克)。的monosome峰由箭头指示。尔斯/ ftp_upload / 54231 / 54231fig3large.jpg"目标="_空白">点击此处查看该图的放大版本。
( - 15分钟100V) 图4的RNA质量评价的RNA被装在1.2%琼脂糖凝胶电泳分离由所示的级分(500纳克从第6天龄的拟南芥幼苗枝条中提取)。胞浆(25S和18S)rRNA基因是由箭头和叶绿体(23S和16S)rRNA基因用括号表示。 请点击此处查看该图的放大版本。
The protocol we present here is an easy and cheap method for generating polysome profiles and isolating mRNAs associated with polysomes, single ribosomes or free of ribosomes. A wide range of different polysome fractionation methods is described in the literature. The method we have described here has been optimized to keep only the necessary compounds and has been adapted for plant material. In particular, we reduced the amount of detergent11 and added chloramphenicol to the buffer to fix the chloroplastic ribosomes to the mRNA (as cycloheximide does for the cytosolic ribosomes)12 . We have also reduced the total ultracentrifugation time7.
To obtain high quality polysome profiles, it is essential to use freshly collected plant material and to perform all steps at 4°C. When using tissues that are poorly translationally active, more plant material can be loaded on the gradient (up to 600 mg).
Analysis of polysome profiles can provide insights into both the overall translational status of cells13 and the translational status of a specific mRNA. We have used RNAs isolated by this method for different applications. Using the RNAs for microarrays allowed us to identify a class of cadmium stress response genes for which transcription and translation are uncoupled 14. We also used this method to identify small RNAs associated with polysomal fractions. This identification was made by northern blotting15 of RNA extracted from polysomal fractions, and provided biochemical evidence for a translational component in the miRNA pathway in plants. In another study, a cis-NAT RNA was identified by quantitative RT-PCR. This cis-NAT is associated to the phosphate homeostasis and promote translation of the PHO1;2 transcript 16.
The main limits of the polysome profiling approach are the lack of information concerning both the position of the ribosome on the mRNA and its progression along the mRNA. Ribosome profiling has emerged to address these limitations 17 and has been successfully used on plant tissues18. Ribosome profiling provides a global measurement of translation by taking advantage of the advances in sequencing technology. Nevertheless, as for any sequencing based assays, the quality of the results depends on the mapping of the sequences to the genome, therefore focusing on the small ribosome-protected fragments makes it difficult to deconvolute repetitive sequences. Moreover, the digestion of RNA not protected by the ribosomes leads to the loss of regulatory information contained in the 3' and 5' UTRs. It is then impossible to distinguish transcript variants that have different 3' or 5' UTRs and show different levels of translation19. The polysome profiling method described here is rapid and does not require specific technical skills. Altogether, these two methods represent complementary approaches to study translation regulation.
The authors have nothing to disclose
这项工作是由法国国家研究署(ANR-14-CE02-0010)的支持。我们感谢本杰明博士场和的Elodie Lanet博士的手稿的批判性阅读。我们感谢米歇尔Terese先生的视频编辑的帮助。
Name | Company | Catalog Number | Comments |
Ultracentrifuge tube, thinwall, polyallomer - 13.2 ml | Beckman Coulter | 331372 | |
Ultracentrifuge tube, thinwall, polyallomer - 38.5 ml | Beckman Coulter | 326823 | |
Glass capillary tube | Drummond Scientific | 1-000-1000 | |
Ultracentrifuge | Beckman Coulter | Optima series | |
Ultracentrifuge Rotor SW41 | Beckman Coulter | 331362 | |
Ultracentrifuge Rotor SW32 | Beckman Coulter | 369650 | |
Peristaltic pump | Any | ||
Tygon R3607 polyvinyl chloride tubing | Fisher Scientific | 070534-22 | Polyvinyl chloride tubing, 2.29 mm |
Fraction collector Model 2110 | Bio-Rad | 731-8120 | |
UV cuvette | Hellma | 170.700-QS | Quartz flow-through cuvette |
UV Spectrophotometer | Varian | Cary50 | Read every 0.0125 sec |
All chemicals | Any | Use only Molecular Biology Grade | |
Murashige and Skoog Basal Salt Mixture (MS) | Sigma-Aldrich | M5524 | |
Rnase-Free water | Any | ||
Petri Dishes | Fisher Scientific | 10083251 | |
Octylphenoxy poly(ethyleneoxy)ethanol, branched (Nonidet P40) | Euromedex | UN3500 | |
Linear acrylamide (acryl carrier) | ThermoFischer scientific | AM9520 | RNA precipitation carrier |
OriginPro 8 | OriginLab | Analysis software |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。
我们使用 cookie 来增强您在我们网站上的体验。
继续使用我们的网站或单击“继续”,即表示您同意接受我们的 cookie。