Method Article
A simple and general method for the synthesis of cyclic peptides using microwave irradiation is outlined. This procedure enables the synthesis of backbone cyclic peptides with a collection of different conformations while retaining the side chains and the pharmacophoric moieties., and therefore, allows to screen for the bioactive conformation.
蛋白质 - 蛋白质相互作用(质子泵抑制剂)是密切参与几乎所有的生物过程,并与许多人类疾病。因此,有一个重大努力的目标在基础研究和在制药工业中质子泵抑制剂。蛋白质 - 蛋白质接口通常是大而平的,而且往往缺乏口袋,小分子靶向此类网站的发现复杂化。使用抗体靶向的替代方法有由于不良的口服生物利用度,低格,透气性好,生产效率低下的限制。
使用的肽靶向PPI接口具有几个优点。肽具有更高的构象柔性,提高的选择性,并且通常便宜。然而,肽具有其自身的局限性,包括稳定性差,效率低下穿越细胞膜。为了克服这种局限性,肽的环化可以被执行。环化已被证明提高肽选择性,代谢稳定性,和生物利用率。然而,预测环肽的生物活性的构象是不平凡的。为了克服这一难题,人们有吸引力的方法是筛选一个焦点库到屏幕,其中所有主链的环肽具有相同的一级序列,但是不同之处在于影响其构象的参数,如环的大小和位置。
我们描述了一个详细的协议用于合成靶向特定寄生虫质子泵抑制剂骨干环肽的文库。采用合理的设计方法,我们开发了从支架L蛋白eishmania受体激活C-激酶(LACK)的肽。我们假设,即是保守的寄生虫,但不是在哺乳动物宿主同源的拉克序列,可以表示相互作用位点的蛋白质,是对于寄生虫'能力至关重要。合成的环肽是使用微波照射以减少反应时间和增加效率。开发骨干环肽具有不同的戒指尺寸库便于系统的屏幕为大多数生物活性构象。此方法提供合成环肽的一般,快速和容易的方式。
蛋白质-蛋白质相互作用(质子泵抑制剂)起到最生物过程的关键作用,从细胞内的信号转导至细胞死亡1。因此,针对生产者价格指数是具有根本的重要性,以基础研究和治疗应用。质子泵抑制剂可以通过特定的和稳定的抗体来调节,但抗体是昂贵的并且难以制造,并且具有生物利用度差。另外,质子泵抑制剂可通过小分子靶向。小分子更容易合成和廉价相比抗体;然而,它们是相对不灵活和更适合于细孔比大的蛋白质-蛋白质界面2,3。多样的研究表明,肽,它们比抗体简单和更便宜,比小分子更加灵活,可以结合蛋白接口和调节质子泵抑制剂4,5。全球治疗肽市场总值约1,500十亿美元在2013年增长10.5%禾LLY 6。此外,有50多个市售的肽,周围270肽在临床试验的不同阶段,和大约400肽在先进的临床前阶段7。尽管众多的肽被用作药物,肽仍然构成限制其广泛的应用,包括生物利用度差和稳定性,低效率在交叉细胞膜,和构象柔性8,9-几个挑战。一个替代方案克服这些缺点是应用不同的修改,例如本地(D-氨基酸和N-烷基化)和全局(环化)约束8,10-12。这些修改也自然出现。例如,环孢菌素A,免疫抑制剂的环肽天然,包含一个单一的D-氨基酸和经历N-烷基化修饰13,14。
修饰的天然氨基酸以诱导本地约束,如D-和N-烷基化,通常会影响所述肽9氏生物活性。然而,环化,其中感兴趣的序列可以保持不变,是更可能保留生物活性。环化是一个非常有吸引力的方式通过减少不同的构象之间的平衡,以限制肽构象的空间。它通常通过限制肽与活性构象,其介导只有一个函数增加生物活性和选择性。环化也通过保持肽在较少受到降解酶识别的构象提高肽的稳定性。事实上,环肽均表现相比相应的线性15-17具有改善的代谢稳定性,生物利用度,和选择性。
然而,环化可以是一把双刃剑,因为在某些情况下,限制可能阻止肽从达到的生物活性构象。为了克服这一障碍,集中库中的所有肽具有相同的主sequencË因此不断的药效可以合成。在库中的肽的不同在于,影响其结构参数,如环的大小和位置,以便随后筛选最生物活性的构象9,18。
肽可以既在溶液中并通过固相肽合成(SPPS)的方式,也就是现在的更普遍的肽合成方法,并将进一步讨论的合成。 SPPS是通过该化学转化通过接头连接在固体载体上进行,以制备多种合成化合物19的方法。 SPPS使组装肽由氨基酸连续耦合在从C末端,其连接到一个固体支持物以逐步的方式,以N-末端。的N-α-氨基酸侧链必须与保护是稳定在期间延伸肽使用的反应条件组,以确保在加入每ST一个氨基酸被掩蔽EP。在最后的步骤中,将肽从树脂释放,侧链保护基团伴随除去。而该肽被合成,所有的可溶性试剂可以通过过滤从肽 - 固体载体基质被移除,并在每个偶联步骤的末尾冲走。有了这样的系统,在高浓度的大过量的试剂可以驱动偶合反应至完成,所有的合成步骤可以在同一个容器中无材料 20的任何传输来执行。
虽然SPPS具有如生产不完全反应,副反应,不纯的试剂,以及困难监测反应21的一些局限,SPPS的优点已经使它的"金标准"的肽合成。这些优点包括选项掺入非天然氨基酸,自动化,容易纯化,最小化物理损失,以及使用过量的试剂,导致高收益。 SPPS已被证明是在困难的序列21,22,荧光修饰23,和肽文库24,25的合成极为有用。 SPPS也是其他聚链组件,例如寡核苷酸26,27,寡糖28,29,和肽核酸30,31非常有用的。有趣的是,在某些情况下,SPPS被证明是有利的,用于合成被在溶液32,33传统上制成的小分子。 SPPS可以用在小规模的研究和教学34,35以及大规模产业36-38。
这主要应用于SPPS方法为肽合成两种合成策略是氧羰基(BOC)和9-芴基(Fmoc)。引入SPPS原始策略是Boc时,这需要强酸条件从第r除去侧链保护基团和裂解肽ESIN。将Fmoc-基于肽合成,不过,使用中等强度的碱的条件,是对酸不稳定的Boc协议39较温和的替代方案。将Fmoc策略利用了设置在合成的最后步骤中除去而裂解从在酸性条件下的树脂肽正交叔丁基(TBU)侧链保护。
对于在固体载体上的肽合成的一般原则是在图1的初始氨基酸,通过在N-α-末端的临时保护基团掩盖,被装载到从C末端的树脂。甲半永久性保护基掩蔽侧链还用于在必要时(图1,步骤1)。靶肽的合成是从C末端组装到N末端 的N-α-临时保护基的脱保护的重复循环(图1,步骤2)和耦合下一保护的氨基酸(图1 翁>,步骤3)。后最后一个氨基酸被加载(图1,步骤4),将肽从树脂载体切下并半永久性保护基团被除去(图1,步骤5)。
的固相肽合成图 1.常规 方案的 N-α-保护的氨基酸通过接头与树脂(步骤1)使用羧基锚定。所需的肽组装在从C末端到N末端通过从N-α(步骤2)和氨基酸耦合(步骤3)的临时保护基团(TPG)的脱保护的重复循环以线性方式。完成的合成(步骤4)后,将半永久性保护基(SPG)的过程中肽裂解(步骤5)去保护。获得="_空白">点击此处查看该图的放大版本。
完整的肽链的组装后,环化可以通过多种替代来实现:(A)的头-尾环化-这是一种方便的方式,但不限于,因为它仅提供一个用于环化(图2A)的选项,(B)的环化使用来自感兴趣序列中的氨基酸,包含生物活性官能团的-然而,使用这些氨基酸可通过,而不会干扰增加的氨基酸(或其他构件块)的影响的生物活性(图2B),和(C)环化生物活性序列。引入这些分子是普遍,因为它允许生产集中的库,而无需修改的兴趣(图2C)的序列。
Figure 2. 可替代的肽环化法 (A)的头至尾环化,通过C末端和N末端 之间的肽键。官能团之间(B)的环化,如半胱氨酸残基(1),或赖氨酸的侧链之间形成酰胺键之间的二硫键来天冬氨酸/谷氨酸(2),或侧链为N-或C-末端(3 -4); (C)环化通过增加额外的氨基酸或氨基酸衍生物或小分子,例如前(R0)和(R7)的生物活性序列之后, 请点击此处查看该图的放大版本。
微波辅助合成采用微波辐射加热反应,从而加速有机化工转化40,41。微波化学是基于试剂/能力溶剂吸收所微波能量并将其转换成热42。前的技 术变得普遍,主要缺点必须克服,包括可控性和合成协议再现性和缺乏可用的系统为适当的温度和压力控制的43,44。做使用厨房微波合成几个短肽(7-10个氨基酸)与显著提高耦合效率和纯度45的微波辅助肽合成的第一份报告。此外,微波能量被证明减少链聚集,降低副反应,限制了外消旋化,并提高连接速度,这是所有艰难和漫长的序列46-53的关键。
目前在固体载体上使用微波照射于肽或相关化合物的合成中是广泛的,包括(A)中合成的有机溶剂54的水代替; (B)的合成肽的同常见的翻译后修饰,如糖 肽55-58或59-61磷酸,其合成通常是困难的,因为位阻氨基酸衍生物的低耦合效率; (C)的合成与修饰肽主链,如azapeptides,其可以由替换的氨基酸残基的C(α)与氮原子62,或拟肽,其侧链连接到被形成的酰胺氮而非Cα原子63,64; (d)合成环肽65-71的;和(E)的合成组合库51,72中。在许多情况下,作者报告更高的效率和降低的合成时间使用微波辐射相比于常规协议。
用合理的设计73-75,我们开发均来自支架大号 eishmania的受体FO抗寄生虫肽- [R激活C-激酶(LACK)。拉克起着利什曼原虫属感染76的早期阶段发挥重要作用。寄生虫表达缺乏较低水平不缺乏参与必不可少的寄生虫信号传导过程和蛋白质的合成78寄生甚至免疫缺陷小鼠77。因此,缺乏的是一个关键的支架蛋白79和宝贵的药物靶点。重点放在中保守的寄生虫,但不是在宿主哺乳动物同系物的RACK在拉克序列,我们确定了一个8个氨基酸的肽(RNGQCQRK),在培养降低利什曼原虫属的生存能力。
在这里,我们描述了一种协议,用于从上述的LACK蛋白序列衍生骨架的环肽的合成。合成使用微波加热通过SPPS方法用Fmoc / TBU协议的坚实支持的肽。肽是通过酰胺键缀合到一个TAT 47-57(YGRKKRRQRRR)载体肽在SPPS的一部分。的各种货物到细胞中的TAT-基于运输已经使用了超过15年,并输送货物到亚细胞器已经证实80。四种不同的接头,琥珀酸和戊二酸酐以及己二酸和庚二酸,被用来进行环化,以产生二至五个碳原子的羧酸的接头。已完成的环化利用微波能量,和没有微波能量被手动完成的最终裂解和侧链去保护步骤。使用一个自动化微波合成器中的改进的产品纯度,增加了产品的产量,并降低了合成的持续时间。这是一般的协议可以被应用到利用肽理解重要的分子机制在体外和体内 ,并进一步发展潜力的药物用于人类疾病的其他研究。
1.设备和试剂的制备
2. Fmoc保护的氨基酸偶联
3.酸酐/酸偶合
4,N-二甲基三苯甲基(MTT)保护基团去保护离子
注意:赖氨酸侧链保护用N-甲基三苯甲基(MTT)81,保护基,可以有选择地对酸不稳定的条件82,83下脱保护。去保护MTT振荡器上手动保护基没有微波能量。
5.环化线性肽
6.切割的侧链基团和脱保护
7.干燥主干环肽
8.定性骨干环肽
9.监测综合
10. 杜氏利什曼原虫鞭毛体活力的文化含量
这里,我们描述的聚焦小库骨干环肽的特异性靶向的利什曼原虫寄生虫的重要质子泵抑制剂和作为抗寄生虫药(综述约靶向质子泵抑制剂作为抗寄生虫药87的肽)的发展。通过新颖骨干环肽的合成,药效是保守的伸出尺寸的支架。这里提出的焦点库的力量是改变肽支架尺寸,同时允许构象自由通过环化受限程度的能力。做骨干环肽的整个合成使用自动微波合成器在固体载体上,之后将Fmoc / TBU协议。环化通过创建连接体,酸酐/酸和赖氨酸的侧链胺之间形成酰胺键进行。最终的裂解和侧链去保护进行手动无微波能量(用于合成方案和fINAL产品结构见图3)。产物通过制备性HPLC分析,得到的白色粉末25mg的储存在-20℃。的产物的样品经MS(图4)检查和纯度的其程度,使用分析型HPLC(图5)来确定。每个环肽的样品送往生物筛选。一个四个环肽(PL1)的是活性抗杜氏利什曼原虫 ( 杜氏利什曼原虫 ),寄生虫引起内脏利什曼病,在人类中最严重的利什曼病。肽PL1减少寄生虫存活了75%,与对照治疗(表4)进行比较。
图3. 合成方案和骨干环肽在这项研究中合成的结构试剂和条件:(ⅰ)氨基酸偶合:300秒,25瓦,75℃,采用1.1:1:2.2氨基酸/激活/激活基地。 (ⅱ)Fmoc去保护:30秒和180秒都在45瓦,75℃,用在DMF + 0.1M的添加HOBt 20%哌啶。 (ⅲ)酸酐偶合:300秒,25瓦,75℃,用10:10:1酐/ DIEA / DMAP在NMP。 (ⅳ)脱保护MTT:3 *(300秒,0 W,室温),使用1:5:94的TFA / TIS / DCM中。 (五)环化反应:300秒,25 W,75°C,采用5:10的PyBOP / DIEA的DBM。 (ⅵ)切割和脱保护:3小时,0 W,室温,用90:2.5:2.5:5 TFA / TIS / H 2 O /苯酚。肽是通过酰胺键偶联了TAT 47-57(酪氨酸-甘氨酸-精氨酸,赖氨酸,赖氨酸,精氨酸,精氨酸-谷氨酰胺,精氨酸,精氨酸,精氨酸)载体肽的固相合成的一部分。 请点击此处查看该图的放大版本。
图4. MALDI-TOF质谱测定微量代表性的骨干环肽的观测质量,2853.456在接近达成协议,计算出的质量,2854.271。 请点击此处查看该图的放大版本。
示代表骨架的环肽的 图5. 分析反相HPLC迹线。粗制(A)和纯化的(B)的主链的环肽的分析型HPLC迹线。所用的溶剂系统为A(H 2 O的含0.1%TFA)和B(CH 3 CN的0.1%TFA)纯化。线性的5-50%B,在1毫升/ 15分钟,在40℃下用C 18,5微米,150mm柱施加和检测是在215nm梯度分钟。 请按此查看该图的放大版本。
解 | 试剂 | MW(克/摩尔) | D(克/毫升) | 体积(ml) | 浓度(M)的 | 总金额 |
- 氨基酸溶液 - | 丙氨酸氨基酸 | 311.34 | 0.2 | 6.23克 | ||
0.2氨基酸在DMF中号 | DMF | 100 | 百毫升 | |||
丙氨酸氨基酸,但同样的计算,例如应为每个氨基酸进行,用适当的兆瓦。要准备100毫升氨基酸溶液溶解在100毫升DMF6.23克丙氨酸氨基酸。保存在4℃。 | ||||||
- 脱保护解决方案- | 添加HOBt | 135.1 | 0.1 | 3.37克 | ||
哌啶的DMF 20%的v / v溶液用0.1M的HOBt | 哌啶 | 50 | 50毫升 | |||
DMF | 200 | 200毫升 | ||||
脱保护是用于除去Fmoc Nα的-保护基。要准备250毫升脱保护液溶解3.37克的HOBt在200毫升DMF并加入50毫升哌啶。保存在4℃。 | ||||||
- 激活解决方案 - | HBTU | 379.24 | 0.45 | 18.96克 | ||
0.45M的HBTU在DMF | DMF | 100 | 百毫升 | |||
活化剂与活化剂碱用于激活偶联反应前的氨基酸。要准备100毫升活化剂溶液溶解18.96克HBTU在100毫升DMF。保存在4℃。 | ||||||
- 激活基地的解决方案 - | DIEA | 129.24 | 0.742 | 2 | 34.80毫升 | |
的2M DIEA的NMP | NMP | 65.20毫升 | ||||
活化基用于与活化剂来激活偶联反应前的氨基酸。要准备100毫升活化剂的碱溶液混合34.8毫升DIEA和65.2毫升NMP。保存在4℃。 | ||||||
解 | 试剂 | MW(克/摩尔) | D(克/毫升) | 体积(ml) | 公式 | 总金额 |
酐溶液 - 10:1:10酐/ DMAP / DIEA的NMP | 戊二/丁二酸酐 | 114.1 / 100.07 | 10 | 0.11 /0.10克 | ||
DMAP | 122.2 | 1 | 0.01克 | |||
DIEA | 129.24 | 0.742 | 10 | 0.09毫升 | ||
NMP | 五 | 5毫升 | ||||
溶解0.11 / 0.10克的戊二/琥珀酐在5ml NMP中,添加0.01克DMAP和0.09 ml的的DIEA到溶液中。准备一个新的解决方案。 | ||||||
酸溶液 - 10:1:10的酸/ DMAP / DIC的DMF | 己二酸/庚二酸 | 146.14 / 160.17 | 10 | 0.15 /0.16克 | ||
DMAP | 122.2 | 1 | 0.01克 | |||
DIC | 126.2 | 0.806 | 10 | 0.16毫升 | ||
DMF | 五 | 5毫升 | ||||
溶解0.15 / 0.16克己二酸/庚二酸在5ml DMF中,加入0.01克DMAP和0.16 ml的DIC的溶液中。准备一个新的解决方案。 | ||||||
环化解决方案 - 5:10的PyBOP / DIEA的DBM | 的PyBOP | 520.3 | 五 | 0.26克 | ||
DIEA | 129.24 | 0.742 | 10 | 0.09毫升 | ||
DBM | 5毫升 | 5毫升 | ||||
溶解0.26克的PyBOP在5ml DBM和添加0.09 ml的的DIEA到溶液中。准备新的解决方案。 |
表1.试剂和解决方案的骨干环肽合成的综合解决方案和试剂 。清单提供。
微波周期 | 功率(W) | 温度 (℃) | 时间(秒) | ||
1 | 耦合氨基酸 | 25 | 75 | 300 | |
2 | Fmoc保护基的脱保护 | (一)初始去保护 | 45 | 75 | 三十 |
(b)完成脱保护 | 45 | 75 | 180 |
表2.微波周期耦合和去保护。微波周期氨基酸偶合和Fmoc去保护。 (1)耦合的氨基酸。 (一)的初始和(b)完全脱保护:将Fmoc掩蔽基团(2)的脱保护在两个步骤中完成的。
问题 | 可能原因 | 解 |
凯撒或氯苯醌测试后的氨基酸偶联积极 | 的氨基酸偶联不完全 | 重复该偶联步骤 |
肽不能有效地从上清液中分离 | TFA的过量 | 蒸发用氮气流的样品 |
缺失序列中的产品存在 | 去除Fmoc不完整 | 监测脱保护由凯瑟或四氯苯醌的测试和/或小规模裂解,万一去除Fmoc是不完全重复的步骤 |
氨基酸couplING是不完整 | 监视其偶合由凯瑟或四氯苯醌的测试和/或小规模裂解,万一氨基酸偶联不完全重复步骤和/或使用较长的反应时间 |
提供表3.故障诊断意见为最常见的合成挑战的解决方案列表。
肽 | 序列 | ñ | 女士。卡尔。 | MS观测。 | HPLC | 产量 | 寄生虫生存能力 | ||
PL1 | RNGQCQRK-GG-YGRKKRRQRRR | 2 | 2854.321 | 2853.456 | 98% | 86% | 25% | ||
PL2 | RNGQCQRK-GG-YGRKKRRQRRR | 3 | 2868.348 | 2868.808 | 98% | 87% | 100% | ||
PL3 | RNGQCQRK-GG-YGRKKRRQRRR | 4 | 2882.375 | 2881.823 | 96% | 89% | 97% | ||
PL4 | RNGQCQRK-GG-YGRKKRRQRRR | 五 | 2896.402 | 2895.603 | 97% | 85% | 98% |
表4.表征和肽在这项研究中的生物活性。n引用在烷基间隔(参见图3为结构)亚甲基的数目。 MS做使用MALDI技术和纯度通过分析型HPLC确定。肽加到杜氏利什曼原虫前鞭毛体和寄生虫的可行性进行评估,并表示为存活百分比相对于对照培养孵育在不存在肽。只有PL1具有较高的利什曼原虫的活性。观察员被失明的实验条件。数据代表三次独立的实验。
从使用一个完全自动化的微波合成的利什曼原虫的蛋白质缺乏衍生骨干环肽的焦点库的合成描述。环肽的焦点库与保守的药效和各种接头的发展。加入各种接头如戊二酸酐,琥珀酸酐,己二酸,庚二酸,赖氨酸,鸟氨酸,和其他构件块的可用于增加品种的环肽的构象空间。有重点的环肽库的合成,使研究人员筛选最佳的构象空间。因为环肽的构象的变化取决于参数例如环的尺寸和位置,可以产生具有不同的构象不同的类似物,其可以是生物结构-活性关系研究 有用88。
在SPPS一个主要挑战是诊断SYNT由于没有中间hetic进步和解决问题的能力是孤立的。因此,几个比色试验可以用来监测反应,如那些识别游离胺通过凯撒和氯醌测试。如果凯瑟或四氯苯醌测试不是指示(例如,脯氨酸和羟基脯氨酸不与茚三酮相同的方式作出反应,其他氨基酸,因为它们的α氨基是五元环的一部分),一个小规模的裂解反应和质谱分析可以被应用到监测合成的进展。
切割时间和裂解混合物可以基于化学性质和所使用的保护基团的数目被修改。建议在使用少量的树脂(1-10毫克)的初始试用切割被执行以验证在适当的条件。王等人已测试了不同的切割鸡尾酒关于各种肽和它们的详细准则可被用于优化reactioN条件89。为骨架的环肽,孵育至少3小时,推荐作为默认为充分裂解。然而,含有大量的保护基团或难以保护基团的肽(例如,叔丁基酯或五甲基-2,3-二氢苯并呋喃-5-磺酰基)应孵育较长时间,以确保完全脱保护。在这里,我们还没有系统地研究最佳的切割时间或鸡尾酒。然而,我们发现,一个短切割时间(小于2小时)产生了一些保护基的不完全切割。
标准微波肽合成协议是为各种肽合成普遍适用的方法。在大多数情况下,使用自动微波合成器中的降低了合成的持续时间,并增加了产品的产率和纯度。此外,它降低副反应如外消旋化和aspartimide形成。虽然我们还没有做一个侧由端在这项研究中的微波和常规合成的比较的基础上,我们和其他实验室的经验,它表明,使用微波辅助合成的是优于常规的协议61,70。几乎所有的活化剂和树脂可以在微波SPPS被有效地使用和一般方法也可以应用到各种修饰的肽,例如,糖肽,磷酸肽,azapeptides,拟肽,和环肽90的合成。
环化是一种方便的方式,以提高线性前体的效力和稳定性。环肽可以得到所希望的构象约束,可能有助于增加的结合亲和力和选择性。此外,线性肽可以被修饰以包含多个环状环,使它们能可能针对多个内源蛋白结合的接口91。然而,值得注意的是,环化是很重要的不necessarily有助于改进所有或有时这些属性。某些环状肽可以导致不由靶向受体识别构象(例如92,93)。因此,环肽的一个焦点库是必要的画面的生物活性。最后,合成的环肽具有所需的药理学特征,小到足以穿过细胞膜,并且大到足以具有高的选择性。高效力,特异性和安全配置文件作出贡献的环肽"的承诺作为候选药物。
作者什么都没有透露。
我们感谢劳伦凡沃森霍夫,Sunhee黄某和达里亚Mochly - 罗森有益的讨论。这项工作是支持的健康资助NIH RC4 TW008781-01 C-IDEA(SPARK)全国学院与NQ的资助者在研究设计,数据收集和分析,发布决定,或准备的手稿没有作用。
Name | Company | Catalog Number | Comments |
REAGENTS | |||
Solid support, Rink Amide AM resin ML | CBL | BR-1330 | loading: 0.49 mmol/g |
Fmoc-Ala-OH | Advanced Chemtech | FA2100 | |
Fmoc-Arg(Pbf)-OH | Advanced Chemtech | FR2136 | |
Fmoc-Asn(Trt)-OH | Advanced Chemtech | FN2152 | |
Fmoc-Asp(OBut)-OH | Advanced Chemtech | FD2192 | |
Fmoc-Cys(Trt)-OH | Advanced Chemtech | FC2214 | |
Fmoc-Gln(Trt)-OH | Advanced Chemtech | FQ2251 | |
Fmoc-Glu(OtBu)-OH | Advanced Chemtech | FE2237 | |
Fmoc-Gly-OH | Advanced Chemtech | FG2275 | |
Fmoc-His(Trt)-OH | Advanced Chemtech | FH2316 | |
Fmoc-Ile-OH | Advanced Chemtech | FI2326 | |
Fmoc-Leu-OH | Advanced Chemtech | FL2350 | |
Fmoc-Lys(Boc)-OH | Advanced Chemtech | FK2390 | |
Fmoc-Met-OH | Advanced Chemtech | FM2400 | |
Fmoc-Phe-OH | Advanced Chemtech | FF2425 | |
Fmoc-Pro-OH | Advanced Chemtech | FP2450 | |
Fmoc-Ser-(tBu)-OH | Advanced Chemtech | FS2476 | |
Fmoc-Thr(tBu)-OH | Advanced Chemtech | FT2518 | |
Fmoc-Trp(Boc)-OH | Advanced Chemtech | FW2527 | |
Fmoc-Tyr(But)-OH | Advanced Chemtech | FY2563 | |
Fmoc-Val-OH | Advanced Chemtech | FV2575 | |
1-Methyl-2-pyrrolidinone (NMP) | Sigma | 328634 | Caution Toxic/Highly flammable/Irritant. |
N,N-Dimethylformamide (DMF) | Alfa Aesar | 43465 | Caution Toxic. Use high quality DMF to eliminate side reactions such as Fmoc removal as a result of the dimethylamine traces from DMF decomposition. |
Dichloromethane (DCM) | Sigma | D65100 | Caution Harmful |
Dibromomethane (DBM) | Sigma | D41868 | Caution Harmful |
Trifluoroacetic acid (TFA) | Sigma | T62200 | Caution Corrosive/Toxic |
Trifluoroacetic acid, HPLC grade (TFA) | Sigma | 91707 | Caution Corrosive/Toxic |
Diethylether | Sigma | 31690 | Caution Highly flammable/Harmful |
Triisopropylsilane (TIS) | Sigma | 233781 | Caution Irritant/Flammable |
Water, HPLC grade | Sigma | 270733 | |
Acetonitroile, HPLC grade (ACN) | Fisher Scientific | A998-4 | Caution Flammable/Irritant/Harmful |
N,N-Diisopropylethylamine (DIEA) | Sigma | 3440 | Caution Corrosive/Highly flammable |
Piperidine | Sigma | W290807 | Caution Toxic/Highly flammable |
Pyridine | Sigma | 270970 | Caution Highly flammable/Harmful |
Ethanol (EtOH) | Sigma | 459844 | Caution Highly flammable/Irritant |
1-Hydroxybenzotriazole hydrate (HOBt) | Sigma | 157260 | Caution Highly flammable/Irritant/Harmful |
O-(Benzotriazol-1-yl)-N,N,N′,N′- tetramethyluronium hexafluorophosphate (HBTU) | Sigma | 12804 | Caution Irritant/Harmful |
Benzotriazole-1-ly-oxy-tris-pyrrolidinophosphonium hexafluorphosphate (PyBOP) | Advanced Chemtech | RC8602 | Caution Irritant |
Ninhydrin | Sigma | 454044 | Caution Harmful |
Phenol | Sigma | P3653 | Caution Corrosive/Toxic |
Potassium cyanide (KCN) | Sigma | 11813 | Caution Very Toxic |
Potassium hydroxide (KOH) | Sigma | 221473 | Caution Toxic |
N,N’-Diisopropylcarbodiimide (DIC) | Sigma | 38370 | Caution Flammable/ Toxic |
4-Dimethylaminopyridine (DMAP) | Sigma | 522805 | Caution Toxic/Irritant |
Glutaric anhydride | Sigma | G3806 | Caution Flammable/Irritant/Harmful |
Succinic anhydride | Sigma | 239690 | Caution Irritant/Harmful |
Adipic acid | Sigma | A26357 | Caution Toxic/Irritant |
Pimelic acid | Sigma | P45001 | Caution Toxic/Irritant |
Chloranil | Sigma | 23290 | Caution Toxic/Irritant |
Acetaldehyde | Sigma | 402788 | Caution Flammable/ Toxic |
EQUIPMENT | |||
Centrifuge | Beckman Coulter | Allegra 6R centrifuge | |
Lyophilizer | Labconco | freezone 4.5 | |
Vacuum pump | Franklin Electric | model 1101101416 with 3/4 HP | Alcatel pump with Franklin Motor |
Polypropylene cartridge 12 ml | Applied Separation | 2419 | |
Cap plug for 12 ml polypropylene cartridge | Applied Separation | 8157 | |
Polypropylene cartridge 3 ml | Applied Separation | 2413 | |
Cap plug for 3 ml polypropylene cartridge | Applied Separation | 8054 | |
Stop cocks PTFE | Applied Separation | 2406 | |
Tubes flat, 50 ml | VWR | 21008-240 | |
Extraction manifold, 20 pos, 16 x 100 mm tubes | Waters | WAT200609 | |
Shaker, BD adams nutator mixer | Fisher scientific | 22363152 | |
Nalgene HDPE narrow mouth IP2 bottles, 125 ml | Fisher scientific | 03-312-8 | |
Erlenmeyer flask | Fisher Scientific | FB-501, 500 ml | |
Heating block | Thermolyne | 1760 dri bath | |
Disposable borosilicate glass tubes with plain end | Fisher Scientific | 14-961-25 | |
Micropipettes and tips Finnpipette | Thermo | 20–200 and 100–1,000 μl | |
HPLC vials - micro vl pp 400 µl PK100 | VWR | 69400-124 | |
HPLC vial- Blue Snap-It Cap | VWR | 66030-600 | |
Analytical HPLC column | Peeke Scientific | U1-5C18Q-JJ | ultro 120 5 µm C18Q, 4.6 mm ID 150 mm |
Prep HPLC column, XBridge | Waters | OBD C18 5 µm column | 19 mm × 150 mm |
Mass spectrometer | Applied Biosystems | Voyager DE-RP | |
Nitrogen cylinder | |||
Desiccator | |||
Analytical RP-HPLC system Shimadzu LC-20 | equipped with: CBM-20A system controller, SPD-20A detector, CTO-20A column oven, 2 x LC-20AD solvent delivery unit, SIL-20AC autosampler, DGU-20A5 degasser (Shimadzu, MD, USA). | ||
Preparative RP-HPLC system Shimadzu LC-20 | equipped with: CBM-20A system controller, SPD-20A detector, CTO-20A column oven, 2 x LC-6AD solvent delivery unit and FRC-10A fraction collector (Shimadzu, MD, USA). |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。