Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - The University of Arizona
Demonstrating Authors: Bradley Schmitz and Luisa Ikner
Surface soils are a heterogeneous mixture of inorganic and organic particles that combine together to form secondary aggregates. Within and between the aggregates are voids or pores that visually contain both air and water. These conditions create an ideal ecosystem for bacteria, so all soils contain vast populations of bacteria, usually over 1 million per gram of soil.
Bacteria are the simplest of microorganisms, known as prokaryotes. Within this prokaryotic group, there are the filamentous microbes known as actinomycetes. Actinomycetes are actually bacteria, but they are frequently considered to be a unique group within the classification of bacteria because of their filamentous structure, which consists of multiple cells strung together to form hyphae. This experiment uses glycerol case media that select for actinomycete colonies, during dilution and plating. Typically, actinomycetes are approximately 10% of the total bacterial population. Bacteria and actinomycetes are found in every environment on Earth, but the abundance and diversity of these microbes in soil is unparalleled. These microbes are also essential for human life and affect what people eat, drink, breathe, or touch. In addition, there are bacterial species that can infect people and cause disease, and there are bacteria that can produce natural products capable of healing people. Actinomycetes are particularly important for producing antibiotics, such as streptomycin. Bacteria are critical for nutrient cycling, plant growth, and degradation of organic contaminants.
Bacteria are highly diverse in terms of the number of species that can be found in soil, in part because they are physiologically and metabolically diverse. Bacteria can be heterotrophic, meaning they utilize organic compounds, such as glucose, for food and energy, or autotrophic, meaning they utilize inorganic compounds, such as elemental sulfur, for food and energy. They can also be aerobic, utilizing oxygen for respiration, or anaerobic, utilizing combined forms of oxygen, such as nitrate or sulfate, to respire. Some bacteria can use oxygen or combined forms of oxygen and are known as facultative anaerobes.
One way to enumerate the number of bacteria present in a soil sample is to utilize dilution and plating methodology. This methodology utilizes agar as a medium for bacterial growth, a process termed, “culturable technology.” Because of the vast numbers of bacteria found within soils, a small sample of soil is serially diluted in water, prior to being plated on agar within a Petri plate. Typically, a small amount of soil contained within 0.1 to 1 mL of the diluted soil suspension is “spread” over the surface of the agar plate. The plates contain agar, which is molten when hot, but solid when cool. In addition to the agar, nutrients, such as peptone yeast or a product commercially available as R2A, are added to the medium to allow for the growth of heterotrophic bacteria.
Dilution and plating is an inexpensive and relatively simple technology for the enumeration of soil bacteria. However, there are several drawbacks to the technique. Some common errors and assumptions associated with dilution and plating assays are as follows: it is assumed that every single soil bacterium gives rise to a colony, but in reality a colony may arise from a clump of cells, resulting in an underestimation of true culturable count. During serial dilution of the soil, soil particles can settle out (fall to the bottom), so the true aliquot of soil is not passed on into the next dilution. Many soil microbes are viable but non-culturable. Slow growing bacteria may not result in visible colonies within a reasonable time frame (1-2 weeks).
Also, anaerobic bacteria do not grow under aerobic conditions, and bacteria that do grow are selected for by the nutrients added to the medium. Thus R2A selects for heterotrophic bacteria, while elemental sulfur selects for autotrophic sulfur oxidizers. Overall, it is estimated that only 0.1 to 1% of all soil bacteria can be cultured. Therefore, dilution and plating of soil bacteria only accounts for culturable bacteria and underestimates the true viable soil population by one to two orders of magnitude. An example of heterotrophic bacterial colonies that resulted from soil dilution and plating is shown in Figure 1. Note that approximately 1 million bacterial cells are needed for a colony to be visible to the naked eye.
This experiment demonstrates the dilution and spread plating methodology used to enumerate the number of bacteria within a soil sample. Specifically, two media are used: one designed for all bacteria, and the other that selects for actinomycetes. Once the bacterial colonies have grown on the agar plates, isolate the pure cultures of selected colonies by using a streak plate technique. Such pure cultures can then be further analyzed and characterized for specific traits and functions.
Figure 1. Heterotrophic colonies on an R2A agar plate. A number of discrete colonies with diverse morphology arise after dilution and plating from soil. Permission for use granted by Academic Press.
1. Preparation of Soil Dilutions
2. Making Spread Plates for Bacterial Culture
3. Making Spread Plates for Actinomycetes
4. Bacterial and Actinomycete Counts
5. Isolation of Pure Cultures
A 10-g sample of soil with a moisture content of 20% on a dry weight basis is analyzed for viable culturable bacteria via dilution and plating techniques. The dilutions were made as shown in Table 1. 1 mL of solution E is pour-plated onto an appropriate medium and results in 200 bacterial colonies.
But, for 10 g of moist soil,
Therefore,
Step | Dilution | |
10 g soil (weight/volume) | 95 mL saline (solution A) | 10-1 |
1 mL solution A (volume/volume) | 9 mL saline (solution B) | 10-2 |
1 mL solution B (volume/volume) | 9 mL saline (solution C) | 10-3 |
1 mL solution C (volume/volume) | 9 mL saline (solution D) | 10-4 |
1 mL solution D (volume/volume) | 9 mL saline (solution E) | 10-5 |
Table 1: Dilution and plating of the samples.
There are two fundamental applications of dilution and plating of soil bacteria. The first application is the enumeration of culturable bacteria within a particular soil. The quantification of the number of soil bacteria gives an indication of soil health. For example, if there are 106 to 108 culturable bacteria present per gram of soil, this would be considered a healthy number. A number less than 106 per gram indicates poorer soil health, which may be due to a lack of nutrients as found in low organic matter soils; abiotic stress imposed by extreme soil pH values (pH < 5 or > 8); or toxicity imposed by organic or inorganic anthropogenic contaminants.
The second major application is the visualization and isolation of pure cultures of bacteria. The pure cultures can subsequently be characterized and evaluated for specific characteristics that may be useful in either medical or environmental applications. Examples include: antibiotic production; biodegradation of toxic organics; or specific rhizobia useful for nitrogen fixation by leguminous crops, such as peas or beans.
Skip to...
Videos from this collection:
Now Playing
Environmental Microbiology
184.3K Views
Environmental Microbiology
359.4K Views
Environmental Microbiology
126.4K Views
Environmental Microbiology
100.2K Views
Environmental Microbiology
42.2K Views
Environmental Microbiology
57.3K Views
Environmental Microbiology
28.8K Views
Environmental Microbiology
44.6K Views
Environmental Microbiology
40.4K Views
Environmental Microbiology
47.8K Views
Environmental Microbiology
29.5K Views
Environmental Microbiology
39.3K Views
Environmental Microbiology
40.7K Views
Environmental Microbiology
296.0K Views
Environmental Microbiology
13.8K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved