Method Article
Açık yuvarlanma yolu havuzlarında mikroalg yetiştirmek için doğal gaz santrali baca gazındaki karbondioksiti kullanmak için bir protokol tanımlanmıştır. Baca gazı enjeksiyonu bir pH sensörü ile kontrol edilir ve mikroalg büyümesi gerçek zamanlı optik yoğunluk ölçümleri ile izlenir.
Amerika Birleşik Devletleri'nde, toplam karbondioksit (CO2) emisyonlarının% 35'i, doğal gaz elektrik üretimini temsil eden elektrik enerjisi endüstrisinden gelmektedir. Mikroalgler, CO2'yi bitkilerden 10 ila 15 kat daha hızlı biyo-düzeltebilir ve alg biyokütlesini biyoyakıtlar gibi ilgi çekici ürünlere dönüştürebilir. Bu nedenle, bu çalışma, güneybatı Amerika Birleşik Devletleri'nde sıcak yarı kurak bir iklimde bulunan bir doğal gaz santrali ile mikroalg yetiştiriciliğinin potansiyel sinerjilerini gösteren bir protokol sunmaktadır. En son teknolojiler, biyoyakıta daha fazla işlenebilen yeşil alg türü Chlorella sorokiniana aracılığıyla karbon yakalama ve kullanımını geliştirmek için kullanılır. Yarı otomatik bir açık yuvarlanma yolu göletini içeren bir protokol açıklıyoruz ve Tucson, Arizona'daki Tucson Elektrik Santrali'nde test edildiğinde performansının sonuçlarını tartışıyoruz. Baca gazı, pH'ı kontrol etmek için ana karbon kaynağı olarak kullanıldı ve Chlorella sorokiniana yetiştirildi. Algleri büyütmek için optimize edilmiş bir ortam kullanıldı. Zamanın bir fonksiyonu olarak sisteme eklenen CO2 miktarı yakından izlendi. Ek olarak, alg büyüme hızını, biyokütle verimliliğini ve karbon fiksasyonunu etkileyen diğer fizikokimyasal faktörler, optik yoğunluk, çözünmüş oksijen (DO), elektroiletkenlik (EC) ve hava ve havuz sıcaklıkları dahil olmak üzere izlendi. Sonuçlar, 0.385 g / L külsüz kuru ağırlığa kadar bir mikroalg veriminin,% 24'lük bir lipit içeriği ile elde edilebileceğini göstermektedir. CO2 yayıcıları ve alg çiftçileri arasındaki sinerjik fırsatlardan yararlanmak, alg biyoyakıtlarının ve biyoürünlerinin sürdürülebilir üretimini desteklerken karbon yakalamayı artırmak için gereken kaynakları sağlayabilir.
Küresel ısınma bugün dünyanın karşı karşıya olduğu en önemli çevre sorunlarından biridir1. Çalışmalar, ana nedenin, insan faaliyetleri nedeniyle atmosferdeki sera gazı (GHG) emisyonlarının, özellikle CO 2'nin,2,3,4,5,6,7 artışını göstermektedir. ABD'de, CO2 emisyonlarının en büyük yoğunluğu, esas olarak enerji sektöründeki fosil yakıt yanmasından, özellikle de elektrik enerjisi üretim tesislerinden 3,7,8,9'dan kaynaklanmaktadır. Bu nedenle, karbon yakalama ve kullanma (CCU) teknolojileri, sera gazı emisyonlarını azaltmak için ana stratejilerden biri olarak ortaya çıkmıştır 2,7,10. Bunlar, CO2'yi ve suyu fotosentez yoluyla, besinlerin varlığında biyokütleye dönüştürmek için güneş ışığını kullanan biyolojik sistemleri içerir. Hızlı büyüme oranı, yüksek CO 2 fiksasyon kabiliyeti ve yüksek üretim kapasitesi nedeniylemikroalglerin kullanımı önerilmiştir. Ek olarak, mikroalgler geniş biyoenerji potansiyeline sahiptir, çünkü biyokütle fosil yakıtların yerini alabilecek biyoyakıtlar gibi ilgi çekici ürünlere dönüştürülebilir 7,9,10,11,12.
Mikroalgler, açık yuvarlanma yolu havuzları ve kapalı fotobiyoreaktörler 13,14,15,16,17,18,19 dahil olmak üzere çeşitli yetiştirme sistemlerinde veya reaktörlerde büyüyebilir ve biyolojik dönüşüm sağlayabilir. Araştırmacılar, iç veya dış mekan koşulları altında her iki yetiştirme sisteminde biyoprosesin başarısını belirleyen avantajları ve sınırlamaları incelemişlerdir 5,6,16,20,21,22,23,24,25 . Açık yuvarlanma yolu havuzları, baca gazının doğrudan yığından dağıtılabildiği durumlarda karbon yakalama ve kullanım için en yaygın yetiştirme sistemleridir. Bu tür bir yetiştirme sistemi nispeten ucuzdur, ölçeklendirilmesi kolaydır, düşük enerji maliyetlerine sahiptir ve karıştırma için düşük enerji gereksinimlerine sahiptir. Ek olarak, bu sistemler CCU prosesini daha verimli hale getirmek için enerji santrali ile kolayca birlikte yerleştirilebilir. Bununla birlikte, CO2 gaz / sıvı kütle transferindeki sınırlama gibi dikkate alınması gereken bazı dezavantajlar vardır. Sınırlamalar olmasına rağmen, açık yuvarlanma yolu havuzları dış mekan mikroalgal biyoyakıt üretimi için en uygun sistem olarak önerilmiştir 5,9,11,16,20.
Bu makalede, bir doğal gaz santralinin baca gazından karbon yakalamayı birleştiren açık yuvarlanma yolu havuzlarında mikroalg yetiştiriciliği için bir yöntemi detaylandırıyoruz. Yöntem, kültür pH'ına dayalı baca gazı enjeksiyonunu kontrol eden yarı otomatik bir sistemden oluşur; Sistem, optik yoğunluk, çözünmüş oksijen (DO), elektroiletkenlik (EC) ve hava ve havuz sıcaklık sensörlerini kullanarak Chlorella sorokiniana kültür durumunu gerçek zamanlı olarak izler ve kaydeder. Alg biyokütlesi ve baca gazı enjeksiyon verileri, Tucson Elektrik Enerjisi tesisinde her 10 dakikada bir veri kaydedici tarafından toplanır. Yosun suşu bakımı, ölçek büyütme, kalite kontrol ölçümleri ve biyokütle karakterizasyonu (örneğin, optik yoğunluk, g / L ve lipit içeriği arasındaki korelasyon) Arizona Üniversitesi'ndeki bir laboratuvar ortamında gerçekleştirilir. Önceki bir protokol, bilgisayar simülasyonu26 aracılığıyla fotobiyoreaktörlerde mikroalg büyümesini teşvik etmek için baca gazı ayarlarını optimize etmek için bir yöntem özetledi. Burada sunulan protokol, açık yuvarlanma yolu havuzlarını kullanması ve üretilen baca gazının doğrudan kullanılması için bir doğal gaz santralinde yerinde uygulanmak üzere tasarlanması bakımından benzersizdir. Ek olarak, gerçek zamanlı optik yoğunluk ölçümleri protokolün bir parçasıdır. Tarif edildiği gibi sistem, düşük yağış, yıldan yıla yağışlarda önemli değişkenlik, düşük bağıl nem, yüksek buharlaşma oranları, berrak gökyüzü ve yoğun güneş radyasyonu sergileyen sıcak yarı kurak bir iklim (Köppen BSh) için optimize edilmiştir27.
1. Büyüme sistemi: açık açık yarış pisti gölet ayarları
2. pH kontrol sistemi
3. Yosun seçimi ve gerinim bakımı (ışık ve sıcaklık)
NOT: Yeşil algler Chlorella sorokiniana DOE 1412, Juergen Polle (Brooklyn Koleji)30,31 tarafından izole edilmiş ve Ulusal İleri Biyoyakıtlar ve Biyoürünler İttifakı (NAABB) tarafından seçilmiştir; seçimi, Huesemann ve ark.32,33 tarafından yapılan önceki gerinim karakterizasyon çalışmalarına dayanmaktadır. Açık hava açık yuvarlanma yolu havuzlarını kullanırken Güneybatı bölgesinde alg taraması, biyokütle verimliliği ve iklim simülasyonlu kültürleme (örneğin, sıcaklık ve ışık) ile ilgili araştırmaları, bu projede kullanılan yöntemi bilgilendirdi.
4. Ölçeği büyütme ve kalite kontrol
5. Açık havuz yetiştiriciliği için konsantre orta hazırlık
6. Açık açık yuvarlanma yolu gölet aşılama
7. Üretim istasyonunda toplu büyüme deneyi
8. Ayrık örnekleme ve izleme
9. Alg hasadı ve ürün rotasyonu
10. Veri yönetimi
Laboratuvarımızdan elde edilen önceki deneysel sonuçlar, yarı otomatik bir açık yuvarlanma yolu havuzu kullanılarak mikroalg yetiştiriciliğinin karbon yakalama işlemleriyle birleştirilebileceğini göstermektedir. Bu iki süreç arasındaki sinerjiyi daha iyi anlamak için (Şekil 2), bir protokol geliştirdik ve yeşil alg türleri Chlorella sorokiniana'yı sıcak yarı kurak bir iklimde dış mekan koşullarında yetiştirmek için uyarladık. Doğal gaz baca gazı, endüstriyel bir enerji üretim istasyonundan elde edildi. Bu protokol, alg biyokütle verimliliğini değerlendirmek için çeşitli teknolojiler kullanır: (1) gerçek zamanlı optik yoğunluk sensörü kullanarak alg büyümesi (Şekil 5); (2) pH fonksiyonu olarak kültüre baca gazı açma-kapama darbesi enjeksiyonlarına göre alg büyümesi (Şekil 6 ve Şekil 7); ve (3) alg büyümesinin sıcaklık, çözünmüş oksijen ve elektroiletkenlik gibi çevresel parametrelerle korelasyonları (Şekil 8 ve Şekil 9).
Alg büyümesini ve fizyolojik dinamikleri izleyen gerçek zamanlı bir optik yoğunluk sensörünü test ediyoruz. Bu sensör, laboratuvar korelasyonu yoluyla, karşılık gelen külsüz kuru ağırlık biyokütlesini (g / L) oluşturmamızı sağladı. Şekil 5 , sensör ve laboratuvar ölçümleri arasındaki karşılaştırmayı göstermektedir. Her iki okuma da zamanın bir fonksiyonu olarak artan benzer eğilimler göstermektedir. Bununla birlikte, yerinde sensör okumaları gündüz / gece alg büyüme döngüsünü izleyebilir. Söz konusu döngü, optik yoğunluk değerlerinin gündüz arttığını, ancak solunum sırasında geceleri azaldığını ve biyokütle verimliliğinde bir değişiklik olduğunu göstermektedir. Gerçek zamanlı optik yoğunluk sensörünün entegrasyonu, genel alg üretim sistemi hakkında etkili yönetim kararları almayı mümkün kılar.
Tucson, AZ'de özellikle sıcak bir sonbahar mevsiminde ölçülen 24 saatlik bir baca gazı enjeksiyon döngüsü ile Şekil 6'da temsil edilen yarı otomatik bir açma-kapama baca gazı darbe enjeksiyon sistemi kullanıyoruz. Şekil 6'da gösterildiği gibi, baca gazı yaklaşık olarak sabah 8'den akşam 6'ya kadar (günlük dönem) enjekte edildi, ancak akşam 6 ile sabah 8 arasında (gece dönemi) enjekte edilmedi. Bu gündüz / gece döngüsü, günlük güneş ışığına maruz kalmayı ve gece boyunca ışık eksikliğini ve sonuç olarak, sırasıyla fotosentez veya fotorespirasyonun aktivasyonunu yansıtır. Şekil 7 , bu alg partisi sırasında enjekte edilen kümülatif baca gazını (L) göstermektedir. Bu durumda,0.29 g alg biyokütlesi yetiştirmek için 538 L CO 2'ye karşılık gelen 6.564 L baca gazı kullanılmıştır. Grafik, alg büyüme hızı arttıkça, daha fazla baca gazına (CO2) ihtiyaç duyulduğunu göstermektedir (Şekil 6). Deneysel sonuçlar, açma-kapama baca gazı darbe enjeksiyon sisteminin, mikroalg yetiştiriciliği yoluyla karbon yakalama ve kullanımını kolaylaştırmada etkili olduğunu doğrulamıştır.
Diğer fizikokimyasal parametreleri, alg büyümesi ve üretkenliği ile aralarında bir korelasyon kurmak için ölçüyor ve izliyoruz (Şekil 8 ve Şekil 9). Ölçülen çevresel parametreler çözünmüş oksijen, elektroiletkenlik (EC) ve hem hava hem de havuz sıcaklıklarıydı. Beklendiği gibi, EC hariç tüm parametreler, güneş radyasyonu ile yüksek oranda ilişkili olan benzer eğilimler gösterdi. Sonuçlar, bu çevresel değişkenlerin alg büyümesi üzerinde en önemli etkiye sahip olduğunu ve alg biyokütle modellemesi için kullanıldığını göstermektedir35. AK, parti prosesi sırasında önemli ölçüde değişmedi. Bu nedenle, alg büyümesi ile ilgili herhangi bir bilgi sağlamamıştır. Chlorella sorokiniana'nın tuzlu olmayan su kullanılarak yetiştirilmesi için EC ölçümleri ihmal edilebilir.
Şekil 1: Santralden karbon yakalama ve mikroalg yetiştiriciliği için yarı otomatik açık havuz reaktörlerini bağlamak için Tucson Electric Power'daki pilot saha konumu. İki konum şu şekilde temsil edilir: 1) Yosun Sitesi U3 (ünite 3) ve 2) Yosun Sitesi U4 (ünite 4) fotoğraf kredisi: Jose Manuel Cisneros Vazquez. Bu şeklin daha büyük bir versiyonunu görüntülemek için lütfen buraya tıklayın.
Şekil 2: Sıcak yarı kurak bir iklimde mikroalg yetiştiriciliği için karbon yakalama ve yarı otomatik açık yuvarlanma yolu havuzlarının birleştirilmesi için proses akış şeması. (A) Açık Yuvarlanma Yolu Paddlewheel tasarımı; (B) Gerçek deney tesisi; (C) İşlem: Van Den Hende28'den modifiye edilmiş karbon yakalama ve mikroalg yetiştiriciliğinin bağlanması. Göstergeler: T = Sıcaklık; DO = Çözünmüş oksijen; OD = Optik yoğunluk; EC = Elektrik iletkenliği; Veri Kaydedici. Bu şeklin daha büyük bir versiyonunu görüntülemek için lütfen buraya tıklayın.
Şekil 3: Sensör kurulumunun şematik gösterimi . (A) CV1 ve CV2'nin kontrol valfleri, DL'nin datalogger ve T1 ve T2'nin vericiler olduğu genel dış mekan açık havuz sensörlerinin gösterimi. (B) Bir kontrol vanasının gösterimi. (C) Sensörlerin dataloggera bağlantısının gösterimi; koyu mavi daire: gerçek zamanlı optik yoğunluk, turuncu üçgen: pH ve EC, siyah üçgen: termokupllar, kırmızı üçgen: çözünmüş oksijen, açık mavi: kontrol vanası. (D) pH ve EC transmitteri. Bu şeklin daha büyük bir versiyonunu görüntülemek için lütfen buraya tıklayın.
Şekil 4: Alışma işlemi altındaki algler. Üstel fazda ahşap paletler kullanarak mikroalg iklimlendirme stratejisi. Bu şeklin daha büyük bir versiyonunu görüntülemek için lütfen buraya tıklayın.
Şekil 5: Alg büyüme izlemenin temsili. (A) AFDW biyokütle konsantrasyonu (g/L) ile laboratuvar ölçümlerinin süresi arasındaki grafik; (B) Optik yoğunluk sensörü ile laboratuvar ölçümleri arasındaki korelasyon için 650 nm'de grafik; ve (C) gerçek zamanlı optik yoğunluk sensörü için grafik ve deneysel bir parti için zaman. Bu şeklin daha büyük bir versiyonunu görüntülemek için lütfen buraya tıklayın.
Şekil 6: pH fuksiyonu olarak açma/kapama baca gazı darbe enjeksiyonu için grafik. Datalogger, pH = 8.05'te baca gazı enjeksiyonunu (kontrollü valf açık) başlatmak ve pH = 8.00'de baca gazı enjeksiyonunu (kontrollü valf kapalı) sonlandırmak için kuruldu. Bu şeklin daha büyük bir versiyonunu görüntülemek için lütfen buraya tıklayın.
Şekil 7: Alg büyümesi (g / L), enjekte edilen baca gazı miktarı ve zamanın bir fonksiyonu olarak enjekte edilen CO2 miktarı grafiği. Bu şeklin daha büyük bir versiyonunu görüntülemek için lütfen buraya tıklayın.
Şekil 8: Sıcaklık izlemenin gösterimi. Göstergeler: katı sarı çizgi = yuvarlanma yolu gölet reaktörü sıcaklığı; düz gri çizgi = hava sıcaklığı; ve kesikli mavi çizgi = AZMET İstasyonu sıcaklığı (Arizona Meteoroloji Ağı). Bu şeklin daha büyük bir versiyonunu görüntülemek için lütfen buraya tıklayın.
Şekil 9: Alg büyüme parametrelerinin izlenmesi. Efsaneler: turuncu katı çizgi = güneş radyasyonu; gri katı çizgi = elektroiletken (EC); ve sarı katı çizgi = çözünmüş oksijen (DO). Bu şeklin daha büyük bir versiyonunu görüntülemek için lütfen buraya tıklayın.
Bileşen | Çözelti içindeki konsantrasyon (g/L) |
H3 BO3 | 0.00286 |
MnCl2·4H2O | 0.00181 |
ZnSO4·7H2O | 0.0001373 |
Na 2 MoO4·2H2O | 0.00039 |
CuSO4·5H2O | 0.000079 |
Co(NO3)2·6H 2 O | 0.00005518 |
NiCl2·6 H2O | 0.0001 |
Tablo 1: İz elementler çözeltisi tarifi.
Bileşen | Ortak ad | Çözelti içindeki konsantrasyon (g/L) |
(NH2) 2 adet CO | Üre | 0.1 |
MgSOSO4·7H2O | Magnezyum Sülfat | 0.012 |
NH4H2PO4 | Amonyum Fosfat | 0.035 |
Kartal | Potas | 0.175 |
FeCl3 | Ferrik Sitrat (Sitraplex) | 0.005423 |
Eser Metal Çözeltisi | 1000x Mikros hacmi (ml) | 1 |
Tablo 2: 1 L için optimize edilmiş ortam tarifi.
Ek Kodlama Dosyaları. Bu dosyayı indirmek için lütfen tıklayınız.
Bu çalışmada, baca gazı karbon yakalama ve mikroalg yetiştiriciliğinin sinerjik olarak bağlanmasının sıcak yarı kurak bir iklimde mümkün olduğunu gösterdik. Yarı otomatik yuvarlanma yolu gölet sistemi için deneysel protokol, baca gazını karbon kaynağı olarak kullanırken alg büyümesiyle ilişkili ilgili parametreleri gerçek zamanlı olarak izlemek için en son teknolojiyi entegre eder. Önerilen protokol, yuvarlanma yolu havuzlarının ana dezavantajlarından biri olan alg yetiştiriciliğindeki belirsizliği azaltmayı amaçlamaktadır20,21,36. Deneyimlerimize göre, protokolün en kritik adımları pH kontrol sistemini ve sistemi aşılamak için etkili bir yöntemi içerir (Şekil 2). pH kontrol sistemi baca gazı/CO2 sağlar ve CO2 yakalama ve kullanımında verimliliği optimize etmeye yönelik bir stratejiyi temsil eder (Şekil 3)37. Bu kontrollü sistemin, mikroalg yetiştirme prosesi için sürekli bir enjeksiyon sisteminden daha verimli olduğu kanıtlanmıştır, çünkü maksimum alg büyüme hızı 20,37'ye ulaşmak için yeterli baca gazı sağlarken gazsızlaşmayı azaltır. Baca gazı enjeksiyonu pH'a dayandığında, alg yetiştiriciliği için önemli bir faktör, yuvarlanma yolu göleti 38,39'u aşılamadan önce mikroalg türleri için yeterli bir pH değeri seçmektir. Qiu ve ark.40, hücre büyümesi ve lipit üretimi40 göz önüne alındığında, tatlı su türleri Chlorella sorokiniania için 8'lik bir pH değerinin en iyisi olduğunu bulmuşlardır. Dahası, Molina Grima ve ark.41, azot kaybını azaltmak ve mikroalgler / biyokütle41 tarafından daha iyi azot alımı elde etmek için 8'in altında bir pH önermektedir. Bununla birlikte, Yuvraj ve ark.42, azot gübrelemesinin ortamın asitliği üzerindeki etkisi nedeniyle pH'ın sudaki CO2 içeriğini değerlendirmek için uygun bir yöntem olmadığını öne sürmektedir 42. Sonuçlarımız, pH'ın burada sunulan sistem için CO2 enjeksiyonunu yönetmek için etkili bir şekilde kullanılabileceğini göstermektedir (Şekil 6); kültürü pH 8'de tutan baca gazı enjeksiyon yönetimimiz, yüksek biyokütle verimi ve tekrarlanabilirlik ile sonuçlandı (Şekil 7).
Aşılamadan sonra, algler fotoinhibisyondan kaçınmak ve yuvarlanma yolu ortamının yüksek sıcaklığına uyum sağlamak için sisteme alışmalıdır. Bu sıcak yarı kurak iklimde, yüksek güneş radyasyonu nedeniyle alg fotoinhibisyonu gözlemledik 39,43,44 (Şekil 9). Bu etki sadece geciktirmekle kalmaz, aynı zamanda üstel faz32,35,45,46,47 sırasında mikroalg aşılamasını da inhibe edebilir. Alımülasyonun mikroalgler üzerindeki etkisini azaltmak için, yuvarlanma yolu göletinin ahşap paletlerle kısmen gölgelendirilmesinden oluşan başarılı ve uygulanabilir bir strateji tasarladık. Bu strateji, mikroalglerin tekrar tekrar ancak kısa süreliğine güneş koşullarına maruz kalmasına izin verir. Diğer bir stres faktörü ise baca gazının yüksek sıcaklığı ve ortam havasının 33,48'dir (Şekil 8). Baca gazı sıcaklığı yanma sonrası aşamada oldukça yüksektir 10,48,49. Baca gazını, sevk edilen boru hattından yuvarlanma yolu havuzuna doğrudan enjekte ederek kullanmak, ortamın sıcaklığının daha da artmasına katkıda bulunabilir. Bu nedenle, kompresörün önüne yerleştirilen bir kondenserin ardından bir su tutucu sadece ısı transferini değil, aynı zamanda kompresöre ulaşan su miktarını da azaltacaktır (Şekil 2). Her iki cihazın da kompresör arıza oranını azaltmak için gerekli olduğunu gördük. Ek olarak, kompresörün yaşam döngüsü ve bakımı tahmin edilirken nem, baca gazı sıcaklığı ve baca gazının aşındırıcı yapısı da dikkate alınmalıdır. Ayrıca, yüksek sıcaklıklar daha yüksek buharlaşma oranlarına neden olur.
Bu protokol bazı sınırlamalara tabidir. Şekil 6'ya göre, kontrol valfi, fotosentez zirvedeyken yeterli baca gazı enjekte edemedi. Bu etki, reaktör tasarımı 5,16,50,51 nedeniyle gazdan sıvı faza düşük kütle transferine bağlanabilir. Mendoza ve ark.36,52 ve de Godos ve ark.16, yuvarlanma yolu havuzlarının zayıf bir gaz / sıvı kütle transferine sahip olduğunu ve bunun da en ciddi tasarım kısıtlamalarından birini temsil ettiğini belirtmiştir16,36,52. Sığ kanal tasarımları, gaz ve kültür ortamı arasındaki kısa arayüz alanı nedeniyle CO 2 kütle transferini sınırlar ve bu da CO 2 gazçıkarmada bir artışa neden olur (Şekil 2). Bu nedenle, karterler, karıştırma kolonları, geçirgen silikon ve sparging-difüzyon sistemleri 36,52,53 dahil olmak üzere gaz / sıvı temas süresini artırmak için cihazlar ve yeni konfigürasyonlar önerilmiştir. Tüm bu sistemler CO2 kütle transferini geliştirmek amacıyla kullanılmıştır; Bununla birlikte, bu sistemlerden bazıları besin dağılımını iyileştirir, pH'ı kontrol eder ve fazla O2 5,24,36,52'yi giderir. Son olarak, kesintiler bir enerji santralinden gerçek baca gazı yakalarken ve kullanırken ortaya çıkabilecek diğer sınırlamalardır. Bu kesintiler her zaman planlanmaz. Bu nedenle, CO2'nin geçici alternatif kaynakları, örneğin CO2 ana hattının birden fazla güç ünitesine taşınması veya bağlanması gibi düşünülmelidir (Şekil 1).
Bu protokol ile mikroalg üretme yeteneği, alg verimliliği (Şekil 5), seçilen parametrelere alg yanıtları (Şekil 6, Şekil 8, Şekil 9) ve doğrudan baca gazı enjeksiyonu ile beslendiğinde istenen alg türlerinin başarılı bir şekilde yetiştirilmesi ile ilgili sonuçlarımızla desteklenmektedir. Açık reaktörlerin işletilmesi daha ucuzdur ve bu nedenle bu protokol, bu karbon yakalama ve kullanım biçiminin ticari ölçekte dağıtımını hızlandırmak için güçlü yönlerine dayanmaktadır 16,20,54,55,56. Bu sıcak yarı kurak bölge, yıl boyunca yüksek güneş radyasyonu ve önemli sıcaklık dalgalanmaları yaşar (Şekil 8 ve Şekil 9)57; Bu nedenle, bu tür bir protokolü test etmek için en önemli yerdir. Optik yoğunluk sensörü, dış mekan açık sistemimiz için tutarlı OD okumaları sağladı (Şekil 5); Bu tür veri toplama, diğer sensörleri kullanarak pratik olmayacaktır. Ayrıca, sensörler gündüzden geceye önemli sıcaklık değişimlerine iyi yanıt verdi (Şekil 8), alg verimliliği kararlarını zamanında vermemizi sağladı29. Ayrıca, önerilen optimize edilmiş ortam, ticari gübreye ve hazır bulunan besin kaynaklarına dayanma konusunda kritik bir avantaja sahiptir58 (Tablo 1 ve 2); Bu ortam şirket içinde kolayca üretilebilir veya tarımsal sıvı gübre firmalarından talep üzerine tedarik edilebilir58. Son olarak, yarı otomatik protokol ek bir doğal gaz santralinde test edildi. Bu doğrulama çalışmasının sonuçları bu makalede sunulmamıştır. Bu doğrulama çalışmasında, protokol, Tucson'daki aşırı hava koşullarına ve reaktörün santral düzenindeki konumu nedeniyle üretim istasyonundaki olağanüstü sıcak sıcaklıklara rağmen başarılı oldu. Bu nedenle, doğal gaz elektrik üretmek için yakıt olarak kullanıldığında Tucson'un çevresi için protokol tekrarlanabilirliği incelenmiştir.
Bu protokolü daha da geliştirmek ve ilgili süreçlerin otomasyonunu iyileştirmek ve geliştirmek için aşağıdaki adımlar önerilir. İlk öneri, baca gazı enjeksiyonunu tamamen değişken oranlı bir süreç haline getirmek, böylece CO2 ve pH yönetimini iyileştirmektir; Mevcut program, pH 8'in üzerine çıktığında enjeksiyon vanasını tamamen açar ve pH tekrar 8'e ulaştığında kapatır. CO2'nin enjekte edilme şeklinin iyileştirilmesi de gereklidir. Amaç, CO 2 kabarcıklarının boyutunu azaltmak, yani daha yüksek basınçta baca gazı enjekte etmeye başvurmadan ortamdaki CO2 difüzyonunu arttırmak için mikro kabarcıklar üretmektir. Geliştirilmiş enjektörlerin kullanılması, böylece operasyonel enerji maliyetlerinin azaltılması, protokolün ticari bir uygulamasında gerekli görülmektedir. N kullanım verimliliğini artırmak için baca gazı ve gübreyi, özellikle N'yi kontrol etmek için hava tahminine ve mevcut mikroalg durumuna dayanan öngörücü araçların dahil edilmesi de önerilir. Hesaplamalı akışkan dinamik modellemenin kullanımı, önerilen protokolün daha da geliştirilmesinde hayati bir araç olarak kabul edilir; modelleme, mikroalglerin izlenmesi ve yönetiminde yer alan tüm donanımların tasarımını, yapılandırmasını ve çalışmasını optimize etmeye yardımcı olabilir. Gelecekte keşfedilebilecek bir diğer alan, mikroalg mahsulünün sağlığını ve bileşimini izlemek için çevresel DNA (eDNA) ve gerçek zamanlı PCR tekniklerinin uygulanmasıdır. Su örnekleri analiz edilebilir ve sonuçlar, nesnel mikroalglerin ortamdaki baskın türler olup olmadığını veya rekabet edip etmediğini veya farklı bir organizma ile değiştirilip değiştirilmediğini gösterir.
Yazarların açıklayacak hiçbir şeyleri yoktur.
Bu çalışma, ABD Enerji Bakanlığı DE-EE0006269 Bölgesel Alg Hammadde Test Yatağı projesi ile desteklenmiştir. Ayrıca Esteban Jimenez, Jessica Peebles, Francisco Acedo, Jose Cisneros, RAFT Ekibi, Mark Mansfield, UA enerji santrali personeli ve TEP enerji santrali personeline tüm yardımları için teşekkür ederiz.
Name | Company | Catalog Number | Comments |
Adjustable speed motor (paddle wheel system) | Leeson | 174307 | Lesson 174307.00, type: SCR Voltage; Amps:10 |
Aluminum weight boats | Fisher Scientific | 08-732-102 | Fisherbrand Aluminum Weighing Dishes |
Ammonium Iron (III) (NH?)?[Fe(C?H?O?)?] | Fisher Scientific | 1185 - 57 - 5 | Medium preparation. Ammonium iron(III) citrate |
Ammonium Phosphate | Sigma-Aldrich | 7722-76-1 | This chemical is used for the optimized medium |
Ampicillin sodium salt | Sigma Aldrich | A9518-5G | This chemical is used for avoiding algae contamination |
Autoclave | Amerex Instrument Inc | Hirayama HA300MII | |
Bacto agar | Fisher Scientific | BP1423500 | Fisher BioReagents Granulated Agar |
Bleach | Clorox | Germicidal Bleach, concentrated clorox | |
Boric Acid (H3BO3) | Fisher Scientific | 10043-35-3 | Trace Elelements: Boric acid |
Calcium chloride dihydrate (CaCl2*2H2O) | Sigma-Aldrich | 10035-04-8 | Medium preparation. Calcium chloride dihydrate |
Carboys (20 L) | Nalgene - Thermo Fisher Scientific | 2250-0050PK | Polypropylene Carboy w/Handles |
Centrifuge | Beckman Coulter, Inc | J2-21 | |
Chloroform | Sigma-Aldrich | 67-66-3 | This chemical is used for lipid extraction |
Citraplex 20% Iron | Loveland Products | SDS No. 1000595582 -17-LPI | https://www.fbn.com/direct/product/Citraplex-20-Iron#product_info |
Cobalt (II) nitrate hexahydrate (Co(NO3)2*6H2O) | Sigma-Aldrich | 10026-22-9 | Trace Elements: Cobalt (II) nitrate hexahydrate |
Compressor | Makita | MAC700 | This equipment is used for the injection CO2 system |
Control Valve | Sierra Instruments | SmartTrak 100 | This item needs to be customized for your application. In our case, it was used a 5% CO2 and 95% air mixture. |
Copper (II) Sulfate Pentahydrate (CuSO4*5H2O) | Sigma-Aldrich | 7758-99-8 | Trace Elements: Copper (II) Sulfate Pentahydrate |
Data Logger: Campbell unit CR3000 | Scientific Campbell | CR3000 | This equipment is used for controlling all the system, motoring and recording data |
Dissolvde Oxygen Solution | Campbell Scientific | 14055 | Dissolved oxygen electrolyte solution DO6002 - Lot No. 211085 |
Dissolved Oxygen probe | Sensorex | ? | DO6400/T Dissolved Oxygen Sensor with Digital Communication |
Electroconductivity calibration solution | Ricca Chemical Company | 2245 - 32 ( R2245000-1A ) | Conductivity Standard, 5000 uS/cm at 25C (2620 ppm TDS as NaCl) |
Electroconductivity probe sensor | Hanna Instruments | HI3003/D | Flow-thru Conductivity Probe - NTC Sensor, DIN Connector, 3m Cable |
Ethylenediaminetetraacetic acid disodium salt dihydrate (Na2EDTA*2H2O) | Sigma-Aldrich | 6381-92-6 | Medium Preparation: Ethylenediaminetetraacetic acid disodium salt dihydrate |
Filters | Fisher Scientific | 09-874-48 | Whatman Binder-Free Glass Microfiber Filters |
Flasks | Fisher scientific | 09-552-40 | Pyrex Fernbach Flasks |
Furnace | Hogentogler | Model: F6020C-80 | Thermo Sicentific Thermolyne F6020C - 80 Muffle Furnace |
Glass dessicator | VWR International LLC | 75871-430 | Type 150, 140 mm of diameter |
Glass funnel | Fisher Scientific | FB6005865 | Fisherbrand Reusable Glass Long-Stem Funnels |
Laminar flow hood | Fisher Hamilton Safeair | Fisher Hamilton Stainless Safeair hume hood | |
Magnesium sulfate heptahydrate (MgSO4*7H2O) | Fisher Scientific | 10034 - 99 - 8 | Medium Preparation: Magnesium sulfate heptahydrate |
Methanol | Sigma-Aldrich | 67-56-1 | Lipid extraction solvent |
Micro bubble Diffuser | Pentair Aquatic Eco-Systems | 1PMBD075 | This equipment is used for the injection CO2 system |
Microalgae: Chlorella Sorokiniana | NAABB | DOE 1412 | |
Microoscope | Carl Zeiss 4291097 | ||
Microwave assistant extraction | MARS, CEM Corportation | CEM Mars 5 Xtraction 230/60 Microwave Accelerated Reaction System. Model: 907601 | |
MnCl2*4H2O | Sigma-Aldrich | 13446-34-9 | Manganese(II) chloride tetrahydrate |
Mortars | Fisher Scientific | FB961B | Fisherbrand porcelein mortars |
Nitrogen evaporator | Organomation | N-EVAP 112 Nitrogen Evaporatpr (OA-SYS Heating System) | |
Oven | VWR International LLC | 89511-410 | Forced Air Oven |
Paddle Wheel | 8-blade horizontal axis propeller. This usually comes as part of the paddlewheel reactor. | ||
Paddle wheel motor | Leeson | M1135042.00 | Leeson, Model: CM34025Nz10C; 1/4 HP; Volts 90; FR 34; 62 RPM. |
Pestles | Fisher Scientific | FB961M | Fisherbrand porcelein pestles |
pH and EC Transmitter | Hanna Instruments | HI98143 | Hanna Instruments HI98143-04 pH and EC Transmitter with Galvanic isolated 0-4V. |
pH calibration solutions | Fisher Scientific | 13-643-003 | Thermo Scientific Orion pH Buffer Bottles |
pH probe sensor | Hanna Instruments | HI1006-2005 | Hanna Instruments HI1006-2005 Teflon pH Electrode with matching pin 5m. |
Pippete tips | Fisher Scientific | 1111-2821 | 1000 ul TipOne graduated blue tip in racks |
Pippetter | Fisher Scientific | 13-690-032 | Eppendorf Reserch plus Variable Adjustable Volume Pipettes: Single-channel |
Plastic cuvettes | Fisher scientific | 14377017 | BrandTech BRAND Plastic Cuvettes |
Plates | Fisher scientific | 08-757-100D | Corning Falcon Bacteriological Petri Dishes with Lid |
Potash | This chemical is used for the optimazed medium preparation. It was bought in a fertilizer local company | ||
Potassium phosphate dibasic (K2HPO4) | Sigma-Aldrich | 7758 -11 - 4 | Medium Preparation: Potassium phosphate dibasic |
Pyrex reusable Media Storage Bottles | Fisher scientific | 06-414-2A | 1 L and 2 L bottels - PYREX GL45 Screw Caps with Plug Seals |
Raceway Pond | Similar equipment can be bought at https://microbioengineering.com/products | ||
Real Time Optical Density Sensor | University of Arizona | This equipment was design and build by a member of the group | |
RS232 Cable | Sabrent | Sabrent USB 2.0 to Serial (9-Pin) DB-9 RS-232 Converter Cable, Prolific Chipset, Hexnuts, [Windows 10/8.1/8/7/VISTA/XP, Mac OS X 10.6 and Above] 2.5 Feet (CB-DB9P) | |
Shaker Table | Algae agitation 150 rpm | ||
Sodium Carbonate (Na2CO3) | Sigma-Aldrich | 497-19-8 | Sodium carbonate |
Sodium molybdate dihydrate (Na2MoO4*2H2O) | Sigma-Aldrich | 10102-40-6 | Medium Preparation: Sodium molybdate dihydrate |
Sodium nitrate (NaNO3) | Sigma-Aldrich | 7631-99-4 | Medium Preparation: Sodium nitrate |
Spectophotometer | Fisher Scientific Company | 14-385-400 | Thermo Fisher Scientific - 10S UV-Vis GENESTYS Spectrophotometer cylindrical Longpath cell holder; internal reference dectector, Xenon flash lamp; dual silicon photodiode; 240V, 50 to 60Hz selected automatically. |
Test tubes | Fisher Scientific | 14-961-27 | Fisherbrand Disposable Borosilicate Glass Tubes with Plain End (10 ml) |
Thermocouples type K | Omega | KMQXL-125G-6 | |
Urea | Sigma-Aldrich | 2067-80-3 | Urea |
Vacuum filtration system | Fisher Scientific | XX1514700 | MilliporeSigma Glass Vacuum Filter Holder, 47 mm. The system includes: Ground glass flask attachment, coarse-frit glass filter support, and flask |
Vacuum pump | Grainger | Marathon Electric AC Motor Thermally protected G588DX - MOD 5KH36KNA510X. HP 1/4. RPM 1725/1425 | |
Zinc sulfate heptahydrate (ZnSO4*7H2O) | Sigma-Aldrich | 7446-20-0 | Zinc sulfate heptahydrate |
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır