Method Article
The cut-open Vaseline gap approach is used to obtain low noise recordings of ionic and gating currents from voltage-dependent ion channels expressed in Xenopus oocytes with high resolution of fast channel kinetics. With minor modification, voltage clamp fluorometry can be coupled to the cut-open oocyte protocol.
The cut-open oocyte Vaseline gap (COVG) voltage clamp technique allows for analysis of electrophysiological and kinetic properties of heterologous ion channels in oocytes. Recordings from the cut-open setup are particularly useful for resolving low magnitude gating currents, rapid ionic current activation, and deactivation. The main benefits over the two-electrode voltage clamp (TEVC) technique include increased clamp speed, improved signal-to-noise ratio, and the ability to modulate the intracellular and extracellular milieu.
Here, we employ the human cardiac sodium channel (hNaV1.5), expressed in Xenopus oocytes, to demonstrate the cut-open setup and protocol as well as modifications that are required to add voltage clamp fluorometry capability.
The properties of fast activating ion channels, such as hNaV1.5, cannot be fully resolved near room temperature using TEVC, in which the entirety of the oocyte membrane is clamped, making voltage control difficult. However, in the cut-open technique, isolation of only a small portion of the cell membrane allows for the rapid clamping required to accurately record fast kinetics while preventing channel run-down associated with patch clamp techniques.
In conjunction with the COVG technique, ion channel kinetics and electrophysiological properties can be further assayed by using voltage clamp fluorometry, where protein motion is tracked via cysteine conjugation of extracellularly applied fluorophores, insertion of genetically encoded fluorescent proteins, or the incorporation of unnatural amino acids into the region of interest1. This additional data yields kinetic information about voltage-dependent conformational rearrangements of the protein via changes in the microenvironment surrounding the fluorescent molecule.
Specialized voltage clamping techniques permit the recording of ionic currents at controlled membrane potentials. Widely used two-electrode voltage clamp (TEVC) and patch clamp techniques provide reliable electrophysiological information on the properties of many ion channels. However, both of these methods have drawbacks that prevent the acquisition of reliable data for fast voltage-gated sodium channels and other fast activating channels in membranes such as those of Xenopus oocytes. The Bezanilla and Stefani laboratories consequently developed the cut-open Vaseline gap voltage clamp technique (COVG) for oocytes2. The technique has been applied widely to record, Na+, K+, and Ca2+ channels3-8.
During COVG recording, a heterologous protein-expressing oocyte membrane is divided into three regions. The ionic current data is recorded from the top region of the oocyte as the bath surrounding the top region is clamped to a command potential, which can be easily and quickly changed. The middle region guards against leakage currents by being clamped to the same potential as the top region9. The bottom region is where oocyte opening (cut-open) occurs through the use of a saponin solution or a cannula. Chemical or manual opening of the membrane in the bottom region allows control of the internal potential, which is clamped to ground, and renders the cell interior contiguous with the lower chamber solution. Perfusion of solutions into the lower chamber can adjust the properties of the internal environment, whereas solution exchange in the top chamber alters the external surroundings.
Figure 1. Oocyte Cut-Open Voltage-Clamp Bath Setup Diagram. (A) Top down view of the three baths separated from each other. The dimensions of the chambers for COVG are displayed on the figure. (B) Side view of the baths setup in testing position. Click here to view larger image.
The advantages of the COVG technique include low current noise (1 nA at 3 kHz), control of the ionic composition of the external media, the ability to modulate the internal media, fast time resolution (20-100 μsec time constant of decay of the capacity transient), and stable recordings for several hours9. The disadvantages are that it requires specialized equipment and it is more difficult to perform compared to two electrode voltage clamping (TEVC)10.
While the COVG approach requires highly specialized equipment and intricate procedural elements, it can allow for the acquisition of valuable electrophysiological data. This data, such as gating currents with fast kinetics and tail currents4, can be recorded without some of the issues associated with other voltage clamping protocols including channel run-down. Minor modifications to the COVG setup can allow for the use of temperature controllers and voltage clamp fluorometry (VCF). The inclusion of voltage clamp fluorometry elements within the COVG assembly can augment data output by conferring the ability to monitor protein conformational changes while simultaneously recording current11-13.
1. Initial Equipment Setup
2. Oocyte and Preliminary Preparation
3. Agar Bridge Preparation
4. Cut-open Rig Preparation
5. Cut-open Procedure
6. Cleanup
7. Addition of Voltage Clamp Fluorometry
Figure 4 displays the change in permeability of the oocyte as a saponin solution is applied to the bottom section of the oocyte. Figure 5 demonstrates the rate of intracellular solution exchange by diffusion following saponin permeabilization. 20-40 min are required to come to a steady-state2,18.
Figure 6A show traces generated from the recording protocol. The figure shows ionic currents (after P/-8 leak subtraction) in response to the voltage protocol (inset). Each trace in the figure represents a different applied voltage. The traces with slowest kinetics represent the lowest potentials at which the sodium channel can open. Typically, using traditional methods, it is difficult to maintain voltage control for these lower potentials because the inward current depolarizes the membrane. This depolarization in turn activates more channels creating a positive-feedback loop. The improved clamp speed of the cut-open technique enables voltage control required for recording the channel even at these difficult potentials.
Figure 6B shows the current/voltage curve, which was generated from the traces in Figure 6A. Without the voltage control noted above, the peak current at the earliest potentials (~-60 mV) would be over-estimated. This would prevent accurate description of the current-voltage relationship.
Figure 7 shows an example of voltage clamp fluorometry results for an oocyte. The fluorescence signals were recorded from an oocyte labeled with MTS-TAMRA at a cysteine inserted at position 805 in the DII domain of the human cardiac sodium channel NaV1.5.
Figure 5. Kinetics of Cytoplasmic Na+ Concentration Change by Diffusion. The rate of internal solution equilibration was assessed by applying 90 mM Na+ to both the external and internal sides of the cell and then measuring the Na+ reversal potential by recording I-V relationships every 2 min. If the internal milieu were perfectly replaced, Erev would be 0 mV. Time measurements were started when saponin permeabilized the oocyte membrane. Click here to view larger image.
Figure 6. Wild Type Nav1.5 Sodium Channel Results from Cut-Open Voltage Clamping. (A) Traces of recorded current from different stimuli voltages from a holding potential of -80 mV down to -120 mV for 100 msec, the test pulse (-120 mV to +40 mV in 10 mV increments) for 200 msec, and finally repolarizing to -120 mV. (B)The I-V curve, which represents the voltage-dependence of peak current in panel A. Here, the peak current for pulses up to +60 mV is shown. Click here to view larger image.
Figure 7. Nav1.5 Sodium Channel Voltage Clamp Fluorometry Recordings. (A) Ionic currents recorded from an oocyte labeled with MTS-TAMRA at a cysteine inserted at position 805 in the DII-S4 domain of the human cardiac sodium channel NaV1.5. Voltage pulses ranging from -170 mV to +70 mV were applied in 20 mV increments for a duration of 20 msec following a prepulse to -120 mV. (B) The associated fluorescence signals. Every other fluorescence trace is omitted for clarity. ΔF/F represents the relative change of fluorescence intensity induced by the voltage pulse. Click here to view larger image.
The cut-open oocyte Vaseline gap voltage clamp technique allows for rapid resolution of data, low noise, increased control over internal solution and external solution composition, and stable recordings over relatively long protocols19. These advantages set this technique apart from the standard two-electrode voltage clamp and patch clamp techniques. Although specialized equipment is required and the protocol is relatively difficult, very few issues occur once the system has been optimized. This allows for reproducible recordings of sodium (hNaV1.5) and other fast-activating channels.
The most critical steps in the protocol are the placement of the top chamber on the oocyte and the impalement with the V1 electrode. The tightness of the seal between the cell and the edges of the chamber holes has a great impact on recording quality. The top chamber must be pushed down on the cell to achieve the highest possible resistance without damaging the oocyte. This will require making the oocyte bulge and flatten, but experience and consideration of cell quality is needed to determine the optimum pressure to prevent rupture. Fast recording requires the use of the largest possible pipette opening that can be consistently used without damaging the cell. Special attention should be paid to the taper of the pipette, which should be shallow enough not to significantly expand the wound as the pipette tip is inserted. Impalement should be done slowly and gently, immediately stopping electrode advancement upon the appearance of the membrane potential reading.
Damage to the oocyte membrane and less than perfect oocyte/chamber seals can lead to high leak currents. High leak currents always deteriorate the quality of the recordings. Thus, recordings should always have low leak currents (preferably <150-200 nA). The amplifier’s compensation circuit, the use of P/N online leak-correction, or off-line procedures can compensate for leak current.
Troubleshooting should begin by double-checking that all the components are correctly attached or adjusted, which will generally solve most of the problems. During preparation and the experiment itself, special attention must be paid to any spilled or overflowing fluid levels and crystallized KCl as these can electrically connect compartments that are meant to be isolated. If the system behaves unexpectedly, check for missing or unwanted connections between bridges and chambers. Air bubbles within the agar bridges, at the ends of the agar bridges, or trapped below the cell can also cause connectivity problems that are difficult to detect.
Modifications, as described above, are required to perform voltage clamp fluorometry (VCF) along with COVG. The main modification involves using an altered bath design. In order to accommodate use of a water-immersion 40X objective on the microscope, the upper chamber bath must be larger than it would need to be for a standard cut-open setup. Other aspects and equipment needs of VCF recording in COVG mode are similar to VCF recording in two-electrode voltage-clamp mode14. As emphasized before, the main advantage of the COVG technique is the much faster and accurate voltage control compared to TEVC in a membrane patch that expresses far more ion channels than can be attained in mammalian cell expression systems. Thus, the technique is ideal for VCF and gating current studies where both high temporal resolution and high channel numbers are required for detectable signals.
Although in principle both extra- and intracellular solution exchanges are possible, their completeness and speed of exchange set some limitations on certain types of experiments. As shown in Figure 5, the rate of equilibration of ionic concentrations between the cytoplasm and the lower chamber is fairly slow following saponin permeabilization. Changing ionic concentrations should therefore be considered during long experiments prior to the cell arriving at a steady state. Exchange rates can vary to a great extent depending on the conditions. High channel expression, large driving force, and higher temperature result in faster rates. In our experiment the cell was cooled to 19 °C, channel expression was moderate, and the net charge driven by the I-V protocols was minimal due to the changing current direction. In these settings the normal COVG technique is inferior to various patch-clamp configurations. For COVG applications requiring quick replacement of the cytoplasmic medium a perfusion cannula may be used. In the future, COVG chambers designed with built-in perfusion ports may allow for better control over the exchange characteristics of extracellular solutions.
The authors have nothing to disclose.
All the members of the Washington University in St. Louis Cardiac Molecular Engineering Lab. A Burroughs Welcome Fund Career Award at the Scientific Interface - 1010299 (to J.S.).
Name | Company | Catalog Number | Comments |
External Solution | Brand | Catalog Number | [Final], weight, or volume |
N-methyl-D-glucamine (NMDG) | Sigma-Aldrich | M2004 | 25mM |
MES Sodium Salt | Sigma-Aldrich | M5057 | 90mM |
HEPES | Research Products International | H75030 | 20mM |
Calcium hydroxide | Sigma-Aldrich | 239232 | 2mM |
MES Hydrate | Sigma-Aldrich | M8250 | variable (pH to 7.4) |
Internal Solution | |||
N-methyl-D-glucamine (NMDG) | Sigma-Aldrich | M2004 | 105mM |
MES Sodium Salt | Sigma-Aldrich | M5057 | 10mM |
HEPES | Research Products International | H75030 | 20mM |
Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) | Sigma-Aldrich | E4378 | 2mM |
MES Hydrate | Sigma-Aldrich | M8250 | variable (pH to 7.4) |
Depolarizing Solution | |||
KCl | Sigma-Aldrich | 221473 | 110mM |
Magnesium chloride | Sigma-Aldrich | M8266 | 1.5mM |
Calcium Chloride | Caisson | C021 | 0.8mM |
HEPES | Research Products International | H75030 | 10mM |
Pipet Solution | |||
KCl | Sigma-Aldrich | 221473 | 3M |
Saponin Solution | |||
Saponin | Sigma-Aldrich | 47036 | 0.125g |
Internal Solution | See above | 50mL | |
Agar Bridge Solution | |||
N-methyl-D-glucamine (NMDG) | Sigma-Aldrich | M2004 | 100ml of 1M |
HEPES | Research Products International | H75030 | 1.2g |
MES Hydrate | Sigma-Aldrich | M8250 | variable (pH to 7.4) |
Granulated Agar | Research Products International | A20250 | 3% |
NMDG Storage Solution | |||
NMDG, HEPES, MES Hydrate solution | see above | 40ml | |
Water | 60ml | ||
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
High Performance Oocyte Clamp | Dagan | CA-1B | |
Data Acquisition System | Axon CNS | Digidata 1440A | |
Oscilloscope | Tektronix | TDS 210 | |
Rack Power Filter | APC | G5 | |
Heating/Cooling Bath Temperature Controller | Dagan | HCC-100A | |
PC | Dell | Optiplex 990 | |
pCLAMP 10.3 Voltage Clamp Software | Molecular Devices, LLC | pCLAMP10.3 | |
TMC Vibration Control TableTop Platform | TMC | 64 SERIES | |
TMC Vibration Control Air Table | TMC | 20 Series | |
V1/I Electrode Data Collector | Dagan | part of CA-1B | |
MX10L Micromanipulator | Siskiyou | MX10L | |
Bath/Guard (I/V) Headstage (with appropriate connectors) | Dagan | part of CA-1B | |
Microscope | Omano | OM2300S-JW11 | |
Temperature Control Bath | Custom or Dagan | Custom or HE-204C | Custom chamber made from materials from Cool Polymers (D-series). Dagan also provides a prefeabricated stage (HE-204C). |
Custom AgCl Pellet Container | Custom | Custom | Custom machined |
Ag/AgCl electrode, pellet, 2.0 mm | Warner | E-206 | |
External Oocyte Bath | Custom or Dagan | Custom or CC-1-T-LB | Custom machined or purchased from Dagan |
Internal Oocyte Bath | Custom or Dagan | Custom or CC-TG-ND | Custom machined or purchased from Dagan |
Capillaries for Agar Bridges and Pulled Electrodes | Warner | G150T-4 | |
Rotatable Mounts for the Microscope, Micromanipulator, and Bath | Siskiyou | SD-1280P | |
Fiber-Lite | Dolan-Jenner | LMI-600 | |
Regular Bleach | Clorox | 470174-764 | |
Xenopus laevis Oocytes | Nasco | LM535M (sexually mature females) | |
90 Na+ External Solution | See Solutions sheet | ||
10 Na+ Internal Solution | See Solutions sheet | ||
3 M KCL | See Solutions sheet | ||
Saponin | Sigma-Aldrich | 47036 | |
NMDG Storage Solution | See Solutions sheet | ||
5mL transfer pipets | SciMart | GS-52 | |
Modified KCl electrode injector | BD | 309659 | Plastic syringe tip melted to allow for injection of solution into electrodes. Alternatively, a Microfil by WPI can be purchased. |
Microvaccum | Custom | Custom | |
Forceps | VWR | 63040-458 | |
Oocyte Handling Tools (Pipette Pump) | VWR | 53502-222 | |
Deionized Water Squirt Bottle | VWR | 16649-911 | |
Vaseline Petroleum Jelly | Fisher Scientific | 19-086-291 | |
Additional Materials Required for VCF Recordings: | |||
VCF Microscope | Nikon | Eclipse FN1 | |
Nikon CFI APO 40XW NIR Objective | Nikon | N40X-NIR | |
X-Y Translator System for Fixed-Stage Upright Microscopes | Sutter Instruments | MT500-586 | |
External VCF Oocyte Bath | Custom | Custom machined. The chamber dimensions are 2.7 x 1.9 x 0.4 cm. | |
Internal VCF Oocyte Bath | Custom | Custom machined. The chamber dimensions are 1.6 x 1.6 x 0.4 cm. | |
Modified Temperature Control Bath | Custom | Custom chamber made from materials from Cool Polymers (D-series). The chamber dimensions of the modified temperature controller bath are 2.7 x 1.9 x 0.3 cm for the horizontal chamber, and 1 x 2.5 x 0.5 cm for the vertical chamber. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved