Source: Deepika Das, Tamara M. Powers, Department of Chemistry, Texas A&M University
Bioinorganic chemistry is the field of study that investigates the role that metals play in biology. Approximately half of all proteins contain metals and it is estimated that up to one third of all proteins rely on metal-containing active sites to function. Proteins that feature metals, called metalloproteins, play a vital role in a variety of cell functions that are necessary for life. Metalloproteins have intrigued and inspired synthetic inorganic chemists for decades, and many research groups have dedicated their programs to modeling the chemistry of metal-containing active sites in proteins through the study of coordination compounds.
The transport of O2 is a vital process for living organisms. O2-transport metalloproteins are responsible for binding, transporting, and releasing oxygen, which can then be used for life processes such as respiration. The oxygen-carrying cobalt coordination complex, [N,N'-bis(salicylaldehyde)ethylenediimino]cobalt(II) [Co(salen)]2 has been studied extensively to gain understanding about how metal complexes reversibly bind O2.1
In this experiment, we will synthesize [Co(salen)]2 and study its reversible reaction with O2 in the presence of dimethylsulfoxide (DMSO). First, we will quantify the amount of O2 consumed upon exposure of [Co(salen)]2 to DMSO. We will then visually observe the release of O2 from the [Co(salen)]2-O2 adduct by exposing the solid to CHCl3.
There are two solid polymorphs of [Co(salen)]2 (active and inactive), which can be isolated from different reaction conditions. Active and inactive [Co(salen)]2 vary in their color (brown and red, respectively), structure, and reactivity. Both polymorphs consist of dimeric units. In the case of active [Co(salen)]2, the Co-centers in each of the two Co(salen)2 molecules are in close proximity, forming a very weak van der Waals interaction between the metal centers (Figure 1). While the active form does exhibit a weak Co-Co interaction, the separation between the dimeric units provides space for O2 to react with the Co centers; as a result, the active form of [Co(salen)]2 reacts with O2 in the solid state.
In the so-called inactive form of [Co(salen)]2, there is a dative interaction between the Co center of one molecule and an oxygen atom from the other (Figure 1). The two Co(salen)2 units are closer together compared to the active form and, as a result, the inactive form is stable in air in the solid state and only reacts with O2 in the presence of a coordinating solvent (such as DMSO), which disrupts the dimeric unit and stabilizes the [Co(salen)]2-O2 adduct. Inactive [Co(salen)]2 is easier to handle and study, since the solid can be isolated without using air-free techniques. Therefore, in this experiment we will synthesize inactive [Co(salen)]2 and study its reaction with O2 in the presence of DMSO.
There are several ways that O2, a diatomic molecule, can coordinate to metal center(s) (Figure 2). End-on binding results in a metal-oxygen bond to one of the oxygen atoms in O2. In side-on binding, both oxygen atoms form bonds to the metal center. In some cases, the O2 unit bridges two metal complexes where end-on and side-on binding are also observed.
Inactive [Co(salen)]2 forms a 2:1 cobalt to O2 adduct in the presence of the coordinating solvent, DMSO. The O2 unit bridges the two cobalt centers in an end-on bridging fashion (Figure 3) and coordinated DMSO molecules complete the octahedral coordination sphere of each of the Co centers. If we consider the MO diagram of O2 and d-orbital splitting diagram for [Co(salen)]2, we can understand why the 2:1 O2 adduct is favored (Figure 4). O2 displays a triplet ground state with two unpaired electrons in the π* MOs. [Co(salen)]2 is paramagnetic, with one unpaired electron in its σ*dz2 MO (assuming square planar (D4h), Co2+, 7 de-). The binding of O2 to [Co(salen)]2 is a redox reaction, where two Co(salen) molecules are oxidized by 1 e- each to a final oxidation state of +3 at cobalt, and the O2 molecule is reduced by 2 e-,resulting in the formation of peroxide (O22-). The 1:1 adduct is not favored in this case because Co(III) is d6 and, therefore, does not want to give up another electron (For a review on MO theory/d-orbital splitting, see the video on Group Theory and MO Theory of Transition Metal Complexes).
In this video, we will experimentally determine the Co:O2 ratio upon reaction of inactive [Co(salen)]2 with O2 in the presence of DMSO by measuring the volume of O2 lost in a closed system. We can use the ideal gas law (Equation 1) to calculate the number of moles of O2 consumed.
PV = nRT (Equation 1)
P = pressure = 1 atm
V = volume (L)
R = 0.082 L atm mol-1 K-1
T = temperature (K)
n = moles
We will then study the reversibility of O2 binding by exposing the resulting solid [Co(salen)]2-O2-(DMSO)2 to chloroform (CHCl3). Addition of CHCl3 (a non-coordinating solvent that cannot stabilize the [Co(salen)]2-O2 adduct) leads to a decrease in the concentration of DMSO. Le Châtelier's principle can explain that upon a decrease in concentration of DMSO, the equilibrium shown in Figure 3 will shift towards the reactants, resulting in liberation of O2 gas.
Figure 1. Active and inactive forms of [Co(salen)]2.
Figure 2. Coordination modes of O2 to metal center, M.
Figure 3. Reversible reaction of O2 with [Co(salen)]2.
Figure 4. MO diagram of O2 and d-orbital splitting diagram of Co(salen) (derived from Group theory, assuming square planar geometry).
1. Synthesis of Inactive [Co(salen)]2
2. Apparatus Setup for O2 Uptake (Figure 5)1
Note: It is very important that the system does not leak. A leak in the system will lead to a lower than expected Co:O2 ratio.
Figure 5. O2 uptake apparatus setup.
3. O2 Uptake Reaction
4. O2 Liberation from [Co(salen)]2 - O2 Adduct
Characterization of Inactive [Co(salen)]2:
IR (cm-1) collected on ATR attachment: 2357 (w), 1626 (w), 1602 (m), 1542 (w), 1528 (m), 1454 (w), 1448 (m), 1429 (m), 1348 (w), 1327 (w), 1323 (m), 1288 (m), 1248 (w), 1236 (w), 1197 (m), 1140 (m), 1124 (m), 1089 (w), 1053 (m), 1026 (w), 970 (w), 952 (w), 947 (w), 902 (m), 878 (w), 845 (w), 813 (w), 794 (w), 750 (s), 730 (s).
O2 Uptake:
59.2 mg (0.090 mmol) of [Co(salen)]2 consumed 0.002 L of O2. Using standard pressure and the temperature recorded in step 3.6, the number of moles of O2 consumed was:
The calculated moles of Co in 0.090 mmol of [Co(salen)]2:
Therefore the Co:O2 ratio was:
0.180 mmol Co : 0.082 mmol O2
which is equivalent to a 2:0.91 ratio of Co to O2.
Addition of CHCl3 to [Co(salen)]2–O2 Adduct:
Upon addition of CHCl3, the CHCl3 solution turned red and a stream of bubbles was liberated from the solid, indicating release of O2 gas and formation of inactive [Co(salen)]2.
In this video, we explained the different ways that diatomic oxygen can coordinate to metal center(s). We synthesized the oxygen-carrying cobalt complex [Co(salen)]2 and studied its reversible binding with O2. Experimentally we demonstrated that inactive [Co(salen)]2 reversibly binds O2 and forms a 2:1 Co:O2 adduct in the presence of DMSO.
All vertebrates depend on hemoglobin, a metalloprotein found in red blood cells, to transport oxygen to respiratory organs as well as other tissues. In hemoglobin, oxygen reversibly binds to a heme group that features a single Fe center coordinated to a heterocyclic ring called a porphyrin (Figure 6a). Hemoglobin is not the only oxygen-carrying and storage metalloprotein. For example, mollusks possess a protein called hemocyanin, which features a dicopper active site that is responsible for oxygen transport (Figure 6b).
Using synthetic molecular species to model active sites in metalloproteins is challenging due to the distinct differences in electronic structure of a simple coordination compound compared to that of a metal surrounded by a protein superstructure. As a result, it is often difficult to precisely replicate the structure of the active site in metalloproteins. While there are examples of model complexes that structurally mimic metal active sites, there are fewer examples of structurally similar model complexes that exhibit reactivity inherent to the native metalloenzyme.
Figure 6. (a) The Fe center in hemoglobin binds to O2 in an end-on fashion, while (b) the copper containing active site in hemocyanin binds to O2 in a bridging side-on orientation.
Перейти к...
Видео из этой коллекции:
Now Playing
Inorganic Chemistry
51.6K Просмотры
Inorganic Chemistry
31.6K Просмотры
Inorganic Chemistry
18.6K Просмотры
Inorganic Chemistry
54.5K Просмотры
Inorganic Chemistry
68.3K Просмотры
Inorganic Chemistry
104.3K Просмотры
Inorganic Chemistry
25.4K Просмотры
Inorganic Chemistry
22.0K Просмотры
Inorganic Chemistry
38.8K Просмотры
Inorganic Chemistry
79.4K Просмотры
Inorganic Chemistry
45.1K Просмотры
Inorganic Chemistry
35.3K Просмотры
Inorganic Chemistry
15.3K Просмотры
Inorganic Chemistry
15.8K Просмотры
Inorganic Chemistry
16.7K Просмотры
Авторские права © 2025 MyJoVE Corporation. Все права защищены