Source: Laboratory of Jonathan Flombaum—Johns Hopkins University
Attention refers to the limited human ability to select some information for processing at the expense of other stimuli in the environment. Attention operates in all sensory modalities: vision, hearing, touch, even taste and smell. It is most often studied in the visual domain though. A common way to study visual attention is with a spatial cueing paradigm. This paradigm allows researchers to measure the consequences of focusing visual attention in some locations and not others. This paradigm was developed by psychologist Michael Posner in the late 70s and early 80s in a series of papers in which he likened attention to a spotlight, selectively illuminating some portion of a scene.1,2 This video demonstrates standard procedures for a spatial cueing experiment to investigate visual attention.
1. Equipment
2. Stimulus and Experiment Design
Figure 1. Sequence of events in the spatial cueing paradigm used to measure the consequences of visual attention. Each trial begins the same way, as shown in frame one, with a central fixation cross and two green boxes on either side. In frame two, the fixation cross is replaced by an arrow, pointing to one of the two boxes (50% of the time each). Finally, in frame three a letter is shown-either an L or a T-in one of the two boxes. In the example shown, the letter is an L. In the right panel example, the letter appears in the box that the arrow points to, producing a congruent trial. In the panel on the left, the letter appears opposite the arrow, producing an incongruent trial. The measure of interest is the time it takes a participant to make a correct response (the reaction time), in particular, the average difference between congruent and incongruent trials.
Figure 2. Sample table for organizing data output in a spatial cueing experiment. The primary measure of interest is the reaction time on each trial. In addition, the condition needs to be recorded in order to compare reaction time in congruent and incongruent trials, and the letter type and response given are necessary in order to evaluate response accuracy. It is also a good idea to record letter position to ensure that trials appear in the correct proportions. Please click here to view a larger version of this figure.
3. Running the Experiment
4. Analyzing the Results
Figure 3. A data table populated with results from 25 spatial cueing trials. The final column, labelled 'Accuracy,' was added after the experiment was completed, and a formula was used to automate an accuracy check. Please click here to view a larger version of this figure.
Figure 4 shows average reaction time for a group of participants, comparing congruent and incongruent trials. Participants were, on average, about 200 ms faster to respond in congruent trials. This shows the advantages associated with the location where one attends and the costs to other locations. The arrow gave participants 80% reliable information about where the letter would appear in each trial, so participants directed visual attention to the positions pointed to by the arrow. When the letter then appeared in that position, which it did most of the time, the participants could process and identify it quickly. When the letter appeared opposite though, participants needed to shift their attention across the screen in order to then process and identify the letter presented, a shift of attention that seemed to have taken about 200 ms, on average.
Figure 4. Reaction time results of a spatial cueing experiment. Participants generally responded more quickly in congruent compared to incongruent trials. In congruent trials, the cue arrow pointed to the place where a letter eventually appeared. But in incongruent trials, it pointed opposite. The difference in reaction times suggests that the arrow led participants to attend to the box pointed to by the arrow, allowing them to more quickly process and identify the letter when it appeared there.
Since it was introduced in the late 1970s, the spatial-cueing task has been used widely by researchers, for example, in order to identify the kinds of stimuli that might automatically cause attention to shift. For example, researchers have investigated whether bright flashes and loud sounds automatically cause attention to shift. In these experiments the letters that need to be identified are sometimes preceded by unexpected lights and sounds. Researchers can then compare detection speeds when a bright flash, for instance, precedes a letter in the same position or in a different position. A cost associated with a flash in an opposite position implies that the flash automatically captured attention.
In the 1990s and after, the task became an important one for use in conjunction with functional magnetic resonance imaging in order to identify the neurological centers involved in the control of spatial attention. By contrasting brain activity in congruent and incongruent conditions, researchers have discovered that regions of the parietal lobe are involved in the additional attentional shift that takes place in incongruent trials compared to congruent ones.
Перейти к...
Видео из этой коллекции:
Now Playing
Sensation and Perception
14.8K Просмотры
Sensation and Perception
11.0K Просмотры
Sensation and Perception
17.2K Просмотры
Sensation and Perception
11.7K Просмотры
Sensation and Perception
6.8K Просмотры
Sensation and Perception
18.2K Просмотры
Sensation and Perception
17.3K Просмотры
Sensation and Perception
13.2K Просмотры
Sensation and Perception
15.8K Просмотры
Sensation and Perception
5.7K Просмотры
Sensation and Perception
15.4K Просмотры
Sensation and Perception
15.9K Просмотры
Sensation and Perception
15.3K Просмотры
Sensation and Perception
24.2K Просмотры
Sensation and Perception
6.4K Просмотры
Авторские права © 2025 MyJoVE Corporation. Все права защищены