Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN
There are many commonly used routes for compound administration in laboratory mice and rats. Protocols may, however, require the use of the less commonly used routes: intracardiac, footpad, and retro-orbital injections. Specialized training is essential for these procedures to be performed successfully. Justification for these routes may need to be provided to gain Institutional Animal Care and Use Committee (IACUC) approval.
Intracardiac administration has been used in a variety of applications, including the development of an animal model of bone cancer metastasis, as well as an examination of the effects of direct intracardiac delivery on the outcome of myocardial infarction. This procedure is often done through the use of an ultrasound to guide the needle into the correct location in the heart.2 However, when performed correctly utilizing the proper landmarks, this procedure can be performed without the use of ultrasound visualization.
Due to the invasive nature of the procedure, the use of intracardiac injection must be scientifically justified in an IACUC protocol. Only one survival injection should be permitted. This procedure requires the use of a general anesthetic, either inhalant or injectable, as per the guidelines established within an organization. Needle selection should be the smallest size possible that will allow for the viscosity of the material injected; generally, a 27-30 gauge needle is used. Injection volumes range from 100 µL to a maximum of 300 µL.
Intravenous injections in the tail of mice are both challenging and often unsuccessful. An alternate route of intravenous administration is through the retro-orbital plexus. While this technique necessitates training and skill to perform, studies have shown that there is a higher success rate with the retro-orbital injection than with lateral tail vein injection.3, 4, 5 Anesthesia is required to prevent the mouse from moving during the procedure. General inhalant anesthesia delivered either via a bell jar or an induction chamber attached to a precision vaporizer is effective. However, if inhalant will be used, be aware that the animal will begin to recover quickly once it is removed from the chamber, so one must be ready to perform the injection. A topical ophthalmic anesthetic (tetracaine or proparacaine) is recommended when multiple injections are to be performed.
The orbital venous structure of the mouse and rat are different. The mouse has a sinus or convergence of several vessels, including the supraorbital vein, dorsal nasal vein, the inferior palpebral vein, and the superficial temporal veins that fill the space in the orbit around the eye. In the rat orbital area, there is a network or plexus of vessels. As with all injections, the needle selected should be the smallest size possible; generally a 27-30 gauge needle. Although there have been reports of larger volumes, the maximum volume is 150 µL per eye.3, 4, 5 One injection per eye, per day, is recommended, with a total of two injections per eye for survival procedures. Also, there should be at least a one-day interval between injections. For a nonsurvival procedure, volumes up to 500 µL can be administered.
Despite the controversy, the use of the foot pad as an injection site is still required for some studies. It has been demonstrated that when injected via the foot pad, the antibody response in some mouse strains was significantly stronger than when injected into the hock.6 All animals must be closely monitored for signs of pain, level of food consumption, and for normal ambulation. Self-mutilation of the foot can occur to the extent of the foot being destroyed. This is a sign of chronic pain. Any animal demonstrating self-mutilation should be called to the attention of the veterinary staff immediately.
Footpad measurements should be done daily as soon as obvious swelling has occurred. Endpoints must be in place according to IACUC guidelines. Generally, the animal must be euthanized when the lesion or tumor interferes with the animal's ability to ambulate or reach food and water. The maximum volume that can be injected into a footpad is 50 µL. A 29-30 gauge needle is recommended for the injection.
1. Intracardiac injection
Figure 1. Intracardiac injection in mice.
2. Intravenous injection utilizing the retro-orbital plexus
Figure 2. Retro orbital injection in mice.
3. Footpad Injection
Figure 3. Footpad injection in mice and rats.
The administration of compounds into animals can have a significant effect on both the wellbeing of the animal and the outcome of the experimental data and scientific value. The proper method of delivery is essential to the success of the experiment. Many factors must be considered to determine the best route, including the scientific aim of the study, the pH of the substance, the required dosage volume, the viscosity of the substance, and the wellbeing of the animals. Technical expertise is also a requirement for all injection methods.
Przejdź do...
Filmy z tej kolekcji:
Now Playing
Lab Animal Research
51.3K Wyświetleń
Lab Animal Research
173.3K Wyświetleń
Lab Animal Research
27.6K Wyświetleń
Lab Animal Research
35.5K Wyświetleń
Lab Animal Research
54.4K Wyświetleń
Lab Animal Research
25.5K Wyświetleń
Lab Animal Research
100.0K Wyświetleń
Lab Animal Research
34.6K Wyświetleń
Lab Animal Research
31.2K Wyświetleń
Lab Animal Research
170.8K Wyświetleń
Lab Animal Research
72.7K Wyświetleń
Lab Animal Research
50.0K Wyświetleń
Lab Animal Research
22.3K Wyświetleń
Lab Animal Research
57.8K Wyświetleń
Lab Animal Research
34.7K Wyświetleń
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone