로그인

Acetals are formed by reacting two equivalents of alcohol with carbonyl compounds like aldehydes or ketones. Acetals are unaffected by bases, nucleophiles, oxidizing agents, and reducing agents. They serve as protecting groups for aldehydes and ketones. Acetals can be easily formed and also easily removed via mild acid hydrolysis.

In the presence of multiple functional groups, when selective reduction of one group over the other is desired, groups like aldehydes and ketones that form acetals readily can be protected from undergoing undesirable reactions. For instance, if a compound contains a ketone and an ester group, the ketone can be protected by converting it into acetal. On the other hand, the ester does not form acetal; hence it can be subjected to the desired reaction, and inthe end, the ketone can be deprotected.

Figure1

The sulfur-containing analogs of acetals are called thioacetals thatcan act as an efficient protecting group for aldehydes and ketones. The thioacetals are stable in acidic conditions. Due to this, they cannot be deprotected by acid hydrolysis. Instead, mercuric chloride in aqueous acetonitrile is used for its deprotection.

Figure2

Apart from acting as protecting groups, thioacetals also play a major role in organic synthesis, especially in reduction reactions. Thioacetals can undergo desulfurization in the presence of Raney nickel and hydrogen to form hydrocarbons.

Figure3

Tags
AcetalsThioacetalsProtecting GroupsAldehydesKetonesAcid HydrolysisSelective ReductionDesulfurizationRaney Nickel

장에서 12:

article

Now Playing

12.14 : Acetals and Thioacetals as Protecting Groups for Aldehydes and Ketones

Aldehydes and Ketones

3.8K Views

article

12.1 : 알데히드와 케톤의 구조

Aldehydes and Ketones

7.5K Views

article

12.2 : IUPAC 알데히드의 명명법

Aldehydes and Ketones

5.1K Views

article

12.3 : IUPAC 케톤의 명명법

Aldehydes and Ketones

5.2K Views

article

12.4 : 알데히드와 케톤의 일반적인 이름

Aldehydes and Ketones

3.3K Views

article

12.5 : 알데히드 및 케톤의 IR 및 UV-Vis 분광법

Aldehydes and Ketones

5.0K Views

article

12.6 : NMR 분광법 및 알데히드 및 케톤의 질량 분광법

Aldehydes and Ketones

3.5K Views

article

12.7 : Alcohols, Alkenes 및 Alkynes로부터 Aldehydes 및 Ketones의 제조

Aldehydes and Ketones

3.3K Views

article

12.8 : 니트릴과 카르복실산으로부터 알데히드와 케톤의 제조

Aldehydes and Ketones

3.2K Views

article

12.9 : 카르복실산 유도체로부터 알데히드 및 케톤의 제조

Aldehydes and Ketones

2.4K Views

article

12.10 : 카르보닐기에 친핵성 첨가: 일반 메커니즘

Aldehydes and Ketones

4.5K Views

article

12.11 : 알데히드와 케톤과 물 함유: 수분 형성

Aldehydes and Ketones

2.9K Views

article

12.12 : 알데히드와 알코올을 함유한 케톤: 헤미아세탈 형성

Aldehydes and Ketones

5.1K Views

article

12.13 : 알데히드 및 케톤에 대한 그룹 보호: 소개

Aldehydes and Ketones

6.0K Views

article

12.15 : HCN을 이용한 알데히드 및 케톤: 시아노히드린 형성 개요

Aldehydes and Ketones

2.5K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유