JoVE Logo

サインイン

鈍頭物体まわりの流れの可視化

概要

ソース: リカルド ・ メヒア ・ アルバレス、コメディフランセーズ Hikmat ジャバー、マフムード ・ N. Abdullatif、機械工学科、ミシガン州立大学、イースト ランシング、MI

流体運動は、その準拠法の非線形性質により複雑なフロー パターンを誘導します。これらのパターンの性質の理解何世紀にも強い精査の対象とされています。パソコンやスパコンを広く使用して流動パターンを推測、それらの機能がまだ複雑な形状や高慣性フローの正確なフローの動作を決定するための十分なない (例えばとき勢いに支配します。粘性抵抗)。これ、明らかにパターンが開発されている流れの政体とジオメトリの理論および数値計算にアクセスできないツールを達することができる流れを作る実験技術の多数の心で。

このデモは、鈍頭物体周りの流れを調査します。物体は、その形状のためは原因が流れをその表面の大部分に分かれてオブジェクトです。これは、ストリーム内の配置は、以下の流れの分離の原因、翼のような流線型の体とは対照的です。本研究の目的は、流れの可視化法として水素気泡を使用することです。水素気泡は、電解水の中の電極を水没で DC 電源を使用して経由で生産されています。非常に細い針金が泡が小さいままし、流体運動をより効果的に管理できるようにする必要があります否定的な電極で水素気泡を形成します。このメソッドは、定常および非定常層流に適しています、オブジェクトの周りの流れの性質を記述する基本的な流線に基づきます。[1-3]

本稿は、機器とそのインストールに関する詳細を含む技術の実装を記述するのに焦点を当てください。その後、技法は円柱周りの流れを特徴づける基本的な流線の 2 つの使用方法を示すためです。これらの流線は、流速とレイノルズ数のようないくつかの重要な流れのパラメーターを推定してフロー パターンを決定するために使用されます。

原則

この構成では、速度と水の一様定常流を検討します(無料ストリーム速度と呼ばれる) 円柱 (図 1) に近づきます。フローの状況に応じてレイノルズ数によって特徴づけられる、この流れが不安定になり、渦を生じさせる。渦は、合理化されたボディではなく、彼らの表面の相当な部分の上の境界層剥離を表わす鈍い物体を過ぎる流れの典型的なです。この境界層の分離をきっかけに定期的に切り離すことができません最終的にボディの後ろの渦の形成に します。定期的な剥離が行われるとき、渦は流す周波数が体の固有振動数と一致する場合、共振負荷をなることができる体の背後にある低圧の交互の項目を生成します。この渦のプロセスは「・ フォン ・ Kármàn ・渦が通り」と呼ばれる (図 2)。旋回する渦のこの繰り返しパターンは鈍頭物体まわりの非定常流れの分離によって引き起こされる、特定のレイノルズ数の範囲で発生します。このシナリオを避けることは、それは致命的な障害につながるので煙突、橋柱など土木構造物の設計に非常に重要です。

Figure 1
1.円柱を過ぎる流れ。基本的な構成の模式図。速度と均一なストリーム 直径のまっすぐな円柱に近づく 接近速度に垂直な対称の軸をもつ

レイノルズ数は粘性力への慣性力の比として定義される無次元のパラメーターです。

(1)

どこは、流体の動粘度特性の速度 (本症例では) と円柱の直径。レイノルズ数は流体の流れの特性の最も重要なパラメーターは、おそらく、・ フォン ・ Kármàn の渦の出現のためのメトリックとして本実験で使用します。特に、レイノルズ数が約 5 と、流れはシリンダーの後ろに 2 つの安定した回転渦を展示します。レイノルズ数が増えると、これらの 2 つの渦を流れの方向に細長い。レイノルズ数約 37 の値に達すると、きっかけは不安定になり、圧力と運動量間の不均衡の結果として正弦波発振を開始します。47 までのレイノルズ数の更なる増加には、正弦波の後流振動 [4,5,6] に続く交互の順番シリンダーからデタッチするのには 2 つのカウンター回転渦が発生します。

円柱からの渦周波数はない定数です。それは、レイノルズ数の値によって異なります。放出周波数は、この特定の流体フロー構成で関連性の高い他の無次元パラメーターであるストローハル数によって特徴付けられます。

(2)

ここでは、渦放出周波数と長さと速度スケールのレイノルズ数の場合と同じです。渦放出周波数は、レイノルズ数 [7] の逆二乗根の線形関数としてストローハル数によって特徴付けられます。

(3)

この関数は常に単調ではない、それは流体の流れの非直線性に負って二次不安定性の結果としてさらに遷移を展示します。その結果、係数レイノルズ数が変わると思います。表 1 は、文献 [7] にも特徴づけられている流れの政体のためのこれらの係数の値を示します。

現在実験中に円柱まわりの外部流れを勉強するのに流線を使用します。これらの流線の定義は次のとおりです。

• 跡: 流体粒子に続く流れに移動しながらパス。

• 脈: 同じ空間的な位置で発生した動きがすべての流体粒子の連続軌跡。

• タイムライン: 連続軌跡を形成しながら同時にタグ付けされた流体粒子のセット。

• 効率化: 時間の時点ではどこにでも速度場に正接連続ライン。

最初の 3 行は比較的簡単に生成実験、合理化が単なる数学的概念で一般的に速度場の瞬時のキャプチャを後処理することによって生成しています。これは常に true、撹拌、streaklines と合理化がお互い一致ため分析が定常流の大幅簡素化され。逆に、これらの行一般に一致しない互いの非定常流れの。この手法の実装は一般的に簡単で、粒子画像流速測定法 [1]、粒子追跡流速測定 [8, 9]、分子タギングなどのより高度で高価な技術ではなく、低コスト機器のみが必要です。流速測定法 [10]。

Figure 2
2.代表的な結果。(上流の妨害の結果として streaklines を示す水素気泡の A) 連続的なシート。棒の影は、マシンから現実の単位への変換を決定する使用されます。サイクルの渦も流す頻度を適切に決定するために示されています。(B) タイムラインを水素の泡が発生します。タイムラインの周波数は明確に定義された、されると流速を正確に測定するにはこの推定に使用される赤い線で囲まれたタイムラインをカウントしますこの図の拡大版を表示するのにはここをクリックしてください

テーブル1.係数の値 のレイノルズ数間隔 (から [8]).

手順

1. 泡の連続シートを出す。

  1. 図 3に示す電気回路図によると機器を設定します。
  2. テスト セクションの下流端水の肯定的な電極を修正 (参照の図 4を参照)。
  3. 上流と流れは、研究の目的を到達する前に、ストリームに泡を解放する興味のポイントの近くにマイナスの電極を修正 (参照の図 4を参照)。水は、2 つの電極間の回路を完了します。
  4. フロー機能をオンに
  5. 周波数コント ローラーのダイヤルを 2 の位置に設定します。これは約 9 × 10-4 m3/s の流量を確立します。
  6. DC 電源を入れますと約 25 V まで電圧を増加、現在、約 190 のセット自体 mA。
  7. 矩形波信号発生器の波形を設定 (記号: )。これは 0 V - 高位置に (回路を閉じ) ソリッドステート リレーをアクティブに 5 の V 正方形信号を生成し、低い位置で開きます
  8. この特定のケースでは、方形波の周波数は重要ではありません。それは非ゼロである必要があります。
  9. 信号発生器の DC オフセット (+5 V) を最大化します。この設定、回路は閉鎖している常に、システムは連続的に気泡を生成します。

Figure 3
図 3。接続のダイアグラム。

Figure 3
図 4。テスト ・ セクション。フローは左から右に行きます。否定的な電極は、流れに押し流されるから水素気泡の層を生成します。肯定的な電極は、その妨害を避けるためにテスト セクションの下流端に設定されます。この図の拡大版を表示するのにはここをクリックしてください

2. タイムラインを作成: する

  1. フロー機能をオンに
  2. 周波数コント ローラーのダイヤルを 2 の位置に設定します。これは約 9 × 10-4 m3/s の流量を確立します。
  3. DC 電源を入れますと約 25 V まで電圧を増加、現在、約 190 のセット自体 mA。
  4. 矩形波信号発生器の波形を設定 (記号: )。これは 0 V - 高位置に (回路を閉じ) ソリッドステート リレーをアクティブに 5 の V 角信号を生成し、低い位置に非アクティブになります (回路を開く)
  5. 信号発生器で +1 V DC オフセットを設定します。
  6. 10 Hz で信号発生器で、方形波の周波数を設定します。
  7. 適切な周波数を節約しながら、タイムラインの領域を増やすに方形波少し負 (-2) の対称性を設定します。

3 ・ フォン ・ Kármàn うずを勉強する流線を使用: する

  1. 棒の直径を測る、キャリパーを使用します。この測定値 (m) の点火ユニットを使用します。
  2. 否定的な電極の下流丸棒を修正します。
  3. 水素気泡の層の高輝度放電ランプの光を投げかけた。光が直接の背後にあるイメージング システムの過飽和を防ぐためにビューの行を確認してください。
  4. ロッド; 視覚化システムを揃える円形の先端だけがカメラの前で表示されている方法です。
  5. [可視化] ウィンドウと単位時間あたりの渦小屋サイクル数をカウントするための参照として使用するロッドの下流は、マークを追加します。

4. データ円柱まわりの流れの解析:

  1. マシン単位から実空間単位への換算係数の決定:
    1. 気泡シートの棒の影の幅を測定 (参照してください図 2 (a) 参照)。測定はこの距離で歪みを回避するロッドで右折しています。これはマシン単位でロッドの直径(ポイントまたはピクセル形式によって)
    2. 次の方程式を使用すると、マシン単位から現実世界の単位への換算係数を決定します。
  2. 流速の決定:
    1. 鈍頭物体の歪みのないタイムライン上流のグループを選択します。
    2. マシン単位で最初と最後のタイムラインの間の距離を測定(ポイントまたはピクセル)。
    3. グループで、タイムラインの数をカウントする
    4. 方形波信号の周波数の注意信号発生器によって生成される、
    5. 次の式から接近流速を決定します。
  3. レイノルズ数の決定:
    1. 作動流体の動粘度を見つける (例えば水m2/s)。
    2. 方程式 (1) を使ってレイノルズ数を計算します。ために、ロッドの直径を考慮した () ステップ 3.1、接近速度の測定 () 式 (5) と 4.3.1 のステップで決定した動粘度で判断
  4. ストローハル数の定量: 無料ストリーム内タイムラインとしてロッドの後流に渦が異なる速度で移動します。したがって、渦放出の頻度は、個別に見積もる必要があります。
    1. 下流のロッドの固定参照を定義します。この参照は、トンネルの外に細いストリングまたはデジタル回線フロー プロセスのビデオに追加可能性があります。
    2. 渦放出のサイクルの数をカウントする、時間の定義された期間の間に参照を横断。渦のサイクルは、図 2(A) で示されています。
    3. 次の式から流す頻度を計算します。
    4. ストローハル数を計算するのに式 (2) に式 (5) と (6) の結果を使用します。

結果

図 2は、ストリート ・ フォン ・ Kármàn の渦の水素気泡可視化の 2 つの代表的な結果を示しています。図 2(A) 水素気泡シートの妨害によって立証されるように streaklines のフィールドの例を示します。この画像を使用して、マシン単位で棒の直径を抽出します。図 2(B) のタイムラインのフィールドの例を示します。このイメージは、接近流速を推定するために使用されます。この実験から抽出されたパラメーターは、表 2 にまとめます。

テーブル2.円柱まわりの流れの代表的な結果

パラメーター
D_o 0.003 m
D_i 14.528 pts
f_s 2.169 Hz
f_tl 10 Hz
L 130.167「pts」
M 4842.67"pts"∕"m"
N_s 60
N_tl 7
T 27.66 秒
U_∞ 0.0384 m/s
Ν 1.004×[10]^(-6) m2/s
日時 115
St 0.169

式 (3) を用いたレイノルズ数は 115 例では現在、この結果の妥当性をテストすることが

(7)

そこから私たちを取得します。

(8)

私たちの実験とを比較した結果 (参考表 2 参照)、実験が満足のいく結果を提供したことを結論付けることができます。図 5では、式 (7) の予測と比較した実験結果を示しています。

Figure 1
図 5.実験結果。円柱まわりの流れのストローハル数とレイノルズ数の関係の予測に対して現在の実験結果との比較

申請書と概要

本研究では円柱周りの流れの画像から定性的および定量的な情報を抽出する水素気泡の使用法を示した。これらの実験から抽出された定量的情報含まれて無料ストリーム速度 ()、渦放出周波数 ()、レイノルズ数 (Re) とストローハル数 (St)。特に、再セント対の結果は過去の研究 [3] 非常に良い一致を出展しました。

現在の実験で使用される遅い速度のため気泡シートの摂動はムラのある泡層を生成します。これらの筋は、基本的に streaklines です。水素気泡シートが下流に移動、これらの streaklines を濃くより不規則になります。無料ストリームにおける乱流強度のものであります。泡が重要な分散を提示する前にテストのセクションを残して以来、トンネルの速度が増加すると、効果は減衰します。Streaklines は、水にさらしたそれの小さい部分を残しながらワイヤをコーティングすることによりあらかじめ選択した場所でも製作可能します。

現在の流動挙動は橋と、オフショアの石油リグの柱風のタービン塔数名線極の電源などの土木構造物まわりの流れに直接適用されます。実際には、この動作は、空のスクレーパーなど円筒形以外の形状を持つにぶい物体によって展示します。渦構造振動流体-構造相互作用を生成することを考えるは、そのデザインの重要な渦構造が公開される周波数を知ることです。点では、エンジニアはことを確認、それようでこの効果、構造体の壊滅的な障害につながる必然的にのでそれが渦周波数と共鳴構造の固有振動数であります。[10] の法律適切なスケーリングを使用と水素気泡水トンネル エンジニアはその構造の設計が安全であるかどうかを確認するまたは変更が必要なかどうかを見つける前に構造とフローの相互作用をシミュレートできます。

にぶい物体のほか水素気泡可視化、翼など合理化された物体周辺の流れを勉強したり、船体を出荷する非常に強力なツールです。によりこの手法で生成される流線の使用、1 つ迎え角で失速行われるなどパラメーターを決定したり、流速に基づく揚力特性を推定します。もっと重大に、流体ラインの歪みのパターンは、そのデザインを最適化するためにエンジニアに役立ちます。

水素気泡の可視化は上記のような外部の流れに制限されません言及。このメソッドは、開いているチャネルまたは完全に閉じ込められたフロー システムを介してフローを観察するも使用できます。後者の場合、壁は光アクセスを確保するため透明になる必要があります。たとえば、1 つはサブソニック流流ディフューザーの設計に興味が幾何学を決定し流動状態をディフューザーはく離と不安定性を展示いたします水素気泡が使用できます。これらの観察に基づいて、デザインは、その適切な機能を確保する実験的最適化されて可能性があります。

タグ

Flow VisualizationBluff BodyFlow PatternsVortex SheddingSeparationCircular CylinderBoundary LayerWakeVorticesLow PressureVon Karman Vortex StreetReynolds Number

スキップ先...

0:07

Overview

0:55

Principles of Flow Separation

4:21

Producing Bubbles and Timelines in the Flow Facility

5:57

Setting up the Bluff Body

6:41

Studying and Analyzing the Von Karman Vortex Street

8:02

Representative Results

9:07

Applications

10:07

Summary

このコレクションのビデオ:

article

Now Playing

鈍頭物体まわりの流れの可視化

Mechanical Engineering

12.2K 閲覧数

article

浮力と浸漬のボディ ドラッグ

Mechanical Engineering

30.2K 閲覧数

article

浮動のコートの安定性

Mechanical Engineering

23.3K 閲覧数

article

推進力と推力

Mechanical Engineering

22.1K 閲覧数

article

配管ネットワークと圧力損失

Mechanical Engineering

58.8K 閲覧数

article

焼入れと沸騰

Mechanical Engineering

8.2K 閲覧数

article

油圧ジャンプ

Mechanical Engineering

41.3K 閲覧数

article

熱交換器の解析

Mechanical Engineering

28.3K 閲覧数

article

冷凍入門

Mechanical Engineering

25.0K 閲覧数

article

熱線

Mechanical Engineering

15.9K 閲覧数

article

乱流を測定

Mechanical Engineering

13.6K 閲覧数

article

傾斜平板に衝突する噴流

Mechanical Engineering

10.8K 閲覧数

article

省エネルギー システムの分析方法

Mechanical Engineering

7.4K 閲覧数

article

質量保存則と流量率測定

Mechanical Engineering

23.0K 閲覧数

article

制御体積法による平板の衝突力の測定

Mechanical Engineering

26.0K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved