Method Article
A protocol is presented for the synthesis and preparation of nanoparticles consisting of electroactive polymers.
A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT).
電気活性ポリマーは、電場の存在下で、それらの特性(色、導電性、反応性、量など )を変更します。迅速なスイッチング時間、同調性、耐久性、電気活性ポリマーの軽量特性は代替エネルギー、センサー、エレクトロクロミック、および生物医学的装置を含む多くの提案の用途、につながっています。電気活性ポリマーは、柔軟、軽量電池、キャパシタ電極として有用である可能性がある。エレクトロクロミック素子における電気活性ポリマーの1アプリケーションは、建物や自動車、サングラス、保護メガネ、光記憶装置、スマート繊維用グレア低減システムを含む。2-5スマートウィンドウは、オンデマンド特定の波長の光を遮断し、家庭や自動車の内装を保護することによって、エネルギー必要量を減らすことができます。スマートテキスタイルは、UV放射線から保護するために衣服に使用することができます。6電気活性ポリマーは、ALSを持っていますO医療機器で使用され始めて。生物医学装置に使用される電気活性ポリマーの中でも、ポリピロール(のPPy)、ポリアニリン(PANI)、およびポリ(3,4-エチレンジオキシチオフェン)(PEDOT)は、最も一般的なの一つです。例えば、ポリマーのこれらの種類は、一般的に、バイオセンサデバイス内のトランスデューサとして使用されている治 療的送達7応用も有望であることが示されています。研究では、電気活性ポリマーから調製されたデバイスからの薬物および治療 用タンパク質の放出を実証した。8-12最近では、電気活性ポリマーは、光熱治療における治療薬として使用されている。13-15を光熱治療において、光熱剤は、近くの光を吸収しなければなりませんまた、光は、典型的には、1センチメートルまで、組織に浸透の最大の深さを持っている治 療の窓、として知られている、(NIR)領域(〜700〜900 nm)を-infrared。この範囲では16,17、ヘモグロビンのような生物学的な発色団は、 、酸化ヘモグロビン、脂質、および水が持っている少しツーなし簡単に浸透する光を可能に吸光度、。光熱剤は、この治療域の光を吸収するとき、光エネルギーは、光熱エネルギーに変換されます。
根岸カップリングを用いて合成したビス- EDOTベンゼンモノマー、置換アルコキシ、アービンおよび共同研究者は、以前に報告されている。18根岸カップリングは、炭素-炭素結合形成のための好ましい方法です。このプロセスは、低毒性であり、他の有機金属を用いるよりも高い反応性を有する傾向がある有機亜鉛中間体の使用を含む多くの利点を有している。19,20有機亜鉛化合物は、有機ハロゲン化物に官能基の幅広い互換性がある。20では根岸カップリング反応は、有機ハロゲン化物及び有機金属は、パラジウム(0)触媒の使用を介して連結されている20本明細書に提示研究では、このクロスカップリング法は、(1,4-ジアルコキシ-2,5-ビスの合成に利用されています3,4- ethylenedioxythienyl)benzeNE(BEDOT-B(OR)2)モノマー。これらのモノマーは、簡単に生物医学的用途における使用のための有望な候補であるポリマーを得るために、電気化学的または化学的に重合することができます。
生物医学的用途のための水性溶液中のコロイド状ポリマー懸濁液を調製するための従来の方法は、典型的には、ナノ析出またはエマルジ ョン溶媒蒸発法に続いて、バルクポリマーの溶解を伴う。21,22のポリNPを(BEDOT-B(OR)2)を製造するためにNPは、 その場で乳化重合中により合成される場合には、ボトムアップアプローチがここで示されています。乳化重合は、容易にスケーラブルであり、NPの製造のための比較的高速な方法であるプロセスである。他の電気活性ポリマーのNPを製造するために乳化重合を用いて、22の研究は、のPPy及びPEDOTのために報告されている。15,23,24 PEDOTのNP、例えばスプレーエマルションpを使用して調製されていますolymerization。24、この方法は、再現するのが困難であり、通常はより大きなミクロンサイズの粒子が得られます。この資料に記載されているプロトコルは、再現性100-nmのポリマーのNPを製造するためのドロップ、超音波処理法の使用を探ります。
このプロトコルでは、以前に報告されたポリ同様のNIR領域の光を吸収するように調整電気活性ポリマー(BEDOT-B(OR)は、2) 合成されたエレクトロクロミックデバイスおよびPTT剤としての可能性を実証することを特徴とします。まず、根岸カップリングを介して、単量体の合成のための手順が記載されています。モノマーは、NMR及び紫外可視近赤外分光法を用いて特徴付けられます。水性媒体中で酸化乳化重合を介してNPのコロイド懸濁液の調製も記載されています。手順は、以前にHanらによって記載された2段階乳化重合プロセスに基づいている。別の単量体に適用されます。二界面活性剤系でありますNPの単分散性を制御するために使用されます。細胞生存率アッセイは、NPの細胞適合性を評価するために使用されます。最後に、PTTトランスデューサとして作用するこれらのNPの電位は、NIRレーザを照射することによって実証されます。
注意:使用する前に、関連するすべての安全データシート(SDS)を参照してください。これらの合成に使用される試薬のいくつかは、潜在的に危険です。個人用保護具(安全眼鏡、手袋、白衣、長ズボン、およびクローズドつま先の靴)を含むすべての適切な安全対策を使用し、ヒュームフード内で合成を行ってください。リチウム化は、特に危険であり、唯一の監督との適切な訓練を受けた人が行ってください。
1.モノマー合成
注: 図1は、合成セクション1.2に記載されている前駆体およびモノマーの製造のための化学的経路を示す- 1.5。
2。電気化学
3. NP準備
図2は、乳化重合によってNPを調製するために使用されるプロセスの概略図を示します。
4.ポリマーフィルム及びNPキャラクタリゼーション
注:紫外可視近赤外分光法を介してポリマーフィルムとのNPを特徴付ける、および動的光散乱、ゼータ電位の分析、および電子顕微鏡を用いたNP。
5. NPの細胞適合性を調査
注:すべての細胞の操作は、細菌、酵母菌、又は環境からの真菌での細胞の汚染を防止するために、及び潜在的に感染症からユーザーを保護するために安全キャビネット(層流フード)中で実施されるべきです。細胞に使用されるすべてのソリューション、用品、無菌であるべきです。適切な無菌細胞培養技術を使用してください。
6.光熱伝達研究
注:この作業では、以前にパタニとTunellによって記述レーザーシステムを利用している33
M1とM2を生じる反応プロトコルは、図1に示されている。モノマーは、1 H及び13 C NMRスペクトル、融点、および元素分析によって特徴づけることができます。 1 H NMRスペクトルは、原子およびそれらの電子環境の接続性に関する情報を提供します。このように、それは日常の反応が正常に完了していることを確認するために使用されます。根岸カップリング反応は、7.1から7.8 ppmのPPMに移行するフェニルプロトンのピークを引き起こし、EDOTにフェニル環の結合を含みます。チエニル陽子はまた、6.5 ppmの高磁場シフトします。エチレンジオキシブリッジ炭素上の4つのプロトンが4.3 ppmのマルチプの2つのセットに分割されます。脂肪族炭素上のプロトンが大幅に変更されません。 13 C NMRスペクトルは、170で、フェニレン炭素145、140、及びチエニル炭素113、150、120、及び112のピークを示すであろう。アリの体位族炭素が大幅に変更されません。化学構造を、1 H NMR、及びM2の13 C NMR を図3に示します 。
ポリマー(P2)とP2のサイクリックボルタンメトリーをもたらすM2のElectropolymerizations は 、図4に示す 。図4(a)では、最初に、電流応答がありません。電位が増加するにつれて、M1モノマー(M、上 E)の酸化の開始は、最初のスキャン中に+ 0.61 Vでモノマー(EのP、M)のピーク酸化に、+ 0.25 Vで見ることができ、観察された最初のピークは、作用電極の表面上のP2の形成を生じ、不可逆的なモノマーの酸化の指標です。 2回目のスキャン中に2つの酸化プロセスが観察される:モノマーの酸化がまだ+0.25 Vで見られる、ポリマーの酸化は50〜4のスキャン速度で実施したP2の0 V.サイクリックボルタンメトリー( 図4B)で見られます00 MV /秒。ポリマーフィルムは、ニュートラル状態での酸化状態で濃い青と赤です。スキャン速度の多様でポリマーを循環する(E、P)は、P2用-0.02 Vで観察されたポリマーは電気活性電極18高分子酸化に付着していることを示す、走査速度とピーク電流との間の線形関係を明らかにし、 100 MV /秒で循環させたときの高分子還元(E cを、p)は -0.3 Vで観察されます。
NPを、図2に示すように合成し、紫外-可視-近赤外分光法、電子顕微鏡法、及びDLSを用いて特徴付けました。紫外-可視-近赤外の酸化およびP2フィルムを低減し、酸化P2 NPのスペクトルは、 図5に示されている。酸化ポリマーフィルムおよびNPは1.56 eVの(795ナノメートル)でのピーク吸光度λmaxを示します。ヒドラジンで還元すると、フィルムのピーク吸光度は2.3 eVの(540 nm)でのλmaxまでシフトします。ポリマーバンドグラム図5の黒矢印で示すように、AP(E g)は、中性ポリマーでπ-π*遷移の開始から決定されます。
図6AにおけるP2 NPのSEM画像は、NPは、直径が球状およびサブ100nm以下であることを示しています。 図6Bの DLSデータは、サンプルが適度に単分散していることを示す、懸濁液のZ平均は、0.13の多分散指数(PDI)を有する直径104ナノメートルであることを示しています。 P2 NPのゼータ電位は、-30.5 mVであることが見出されました。 NPは、NIR放射線に暴露される温度の変化は、光熱変換を示しています。温度が1℃未満の増加を受ける水コントロールと比較し、水でNP懸濁液はNP懸濁液の温度が30℃上昇( 図によって示されるように熱に吸収されたレーザーエネルギーに変換することができます6C)。 ITOガラス上のポリマーフィルムは、808nmで( 図6C)で照射されたときに同様の温度上昇(28℃)が観察されます。
ポリマーNPの細胞適合性を、MTT細胞生存率アッセイを用いて決定されます。 PEDOTのための細胞適合性試験の結果:PSS-CO-MAのNP は 、図7に示されて示されているように、0.23〜56μgの/ mlのNP濃度範囲内で、NPは対照の90%未満に細胞生存率を低下させません。典型的には、20%未満( すなわち、最大80%の生存率)の細胞生存率の減少は、NPの細胞適合性の決意に許容可能であると考えられます。
前駆体の合成を開始し、図1の一般的なモノマーの合成1,4-ジアルコキシ-2,5-ジブロモベンゼンの(A)の合成。 (B)エステル部分を含む1,4-ジアルコキシ-2,5-ジブロモベンゼンの合成。 EDOT 1,4-ジアルコキシ-2,5-ジブロモベンゼンの(C)のクロスカップリング反応、モノマーM1およびM2を得た。 この図の拡大版をご覧になるにはこちらをクリックしてください。
有機溶液は、エマルジ ョンを作成する水溶液に滴下して添加した図2の重合プロセス。モノマー及び有機溶媒が変化してもよいです。 FeCl 3をエマルジ ョンに添加されたとき酸化重合が起こります。コロイド懸濁液を精製した後、NPを、水性媒体中に懸濁されている。 これの拡大版を表示するには、こちらをクリックしてください図。
モノマーM2の図3. NMRスペクトル。4.32 ppmのエチレンプロトンの分裂、チエニルプロトンの高磁場シフト、およびフェニルプロトンの高磁場シフトが成功したカップリングの指標であるM2の(A)1 H NMR分光法。 (B)チエニルおよびフェニル炭素ピークを示すM2の13 C NMR分光法。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図4(A)P2へM2の電気化学重合; 0.1 M TB 0.01 M M2の100 mVの/秒で5サイクルAP / CH 3 CN。 (B)、0.1M TBAP / CH 3 CN中のポリマーフィルムのサイクリックボルタンメトリーは。50、100、200、300、400 mVの/秒でサイクルこの図の拡大版をご覧になるにはこちらをクリックしてください。
P2の紫外-可視-近赤外スペクトルの両方のフィルムとして及びNPの懸濁液として図5。酸化膜 のスペクトルは青色で表示され、縮小フィルムのスペクトルは赤で示されており、酸化のスペクトルでありますNP懸濁液は緑色で示されています。黒い矢印は、ポリマーのバンドギャップの決意に使用される接線に相当します。ポリマーのピーク吸収波長が提供されています。 これの拡大版を表示するには、こちらをクリックしてください図。
P2 NPの形態及び大きさを示す図6(A)SEM像。 P2の(B)サイズ分布:Z平均値は104 nmであるとPDIは0.13であるPSS-CO-MA NPサスペンション。 (C)P2の温度変化:1 mg / mlのレーザー照射の完了時に受動冷却に続いて、300秒間NIR光を照射(青)とフィルム(緑)で、PSS-CO-MA NPサスペンションをクリックしてくださいここで、この図の拡大版を表示します。
PEDOTの図7細胞適合性:PSS-CO-MA NP懸濁液MTTアッセイによって決定される生存率です。NPを含まない培地(ポジティブコントロール)とインキュベートした細胞のそれに平均百分率としてNPの様々な濃度に暴露された細胞について示しました。ネガティブコントロールは、前のMTTアッセイのメタノールへの暴露によって殺さ細胞からなります。エラーバーは、反復間の標準偏差を表す(n = 6)である。 この図の拡大版をご覧になるにはこちらをクリックしてください。
この作業では、電気活性ポリマーNPは、癌治療のための潜在的なPTT剤として合成されています。 NPの調製は、乳化重合に続いて、モノマーの合成から出発し、記載されています。かかるEDOT及びピロールのような電気活性ポリマーを用いたNPの調製は以前に記載されているが、この論文では、このプロセスは、より大きな、より複雑な単量体に拡張することができることを実証し、ユニークな拡張共役モノマーと開始ポリマーNPの調製を記載します。
二つの異なる経路は、ジアルコキシベンゼンモノマーを合成するために必要です。 1,4- dihexyloxybenzeneがKOH /エタノールを用いて合成することができますが、そのアプローチは、1,4-ビス塩基促進エステル加水分解に起因する可能性が最も高い(エチルブタノイル)ベンゼンの合成に失敗しました。 KI / K 2 CO 3の混合物が使用される場合、加水分解が回避され、製品が正常に取得されます。ボットの臭素化時間はdialkoxybenzenes の Br 2 を用いて達成されます 。これは、反応中に形成されたHBrを変位させるアルゴン流れ下でこの実験を行う必要があります。ガス出口フード器具を腐食からのHBrを防止するために中和NaOH溶液をオーバーベントべきです。 HBrのプラスチックチューブが時間をかけて硬化させてもよいことに注意してください。
BEDOT-B(OR)2モノマーM1およびM2は、根岸カップリングを用いて合成しました。これは、BEDOT-B(OR)2の単量体を生成する1,4-ジアルコキシ-2,5-ジブロモベンゼンとのEDOTの炭素-炭素結合のための有効な方法です。これは、望ましくない副反応を最小限にするために、事前のnBuLiの添加°Cを-78 EDOTを冷却することが重要です。 (TLCを用いて決定し、これは、典型的には3~5日かかる)すべての1,4-ジアルコキシ-2,5-ジブロモベンゼンを反応混合物から除去されると、反応は完了しました。反応は非常に空気に敏感であり、空気への曝露は、反応の収率に影響を与えます。このように、INT密封されたフラスコ中に(例えば、触媒など)の固体化合物をroducing、大気暴露は、アルゴン流を増加させることによって最小化されるべきです。
電気活性モノマーおよびポリマーは、日常的に、モノマーとポリマーの酸化ポテンシャル及びポリマー還元電位を決定するために、サイクリックボルタンメトリーを用いて特徴付けされ、電気化学的重合によって調製されたフィルムは、両方の酸化および還元状態における紫外可視近赤外スペクトル中のポリマーの吸収を決定するために使用されます。この作業では、ポリマーフィルムは、白金ボタンと電解によりITO被覆ガラスの両方の上に堆積させました。電解の利点のいくつかを再現し、重合膜の電流を監視し、特定の応答が達成される電解を停止して膜厚を制御する能力である34の電気化学実験は、アルゴンなどの不活性雰囲気下で行われなければなりません。アルゴンの流れがないように、ゆっくりとすべきです拡散制御プロセスを確保するために溶液の表面を乱します。代替的に、電気化学的実験は、電気フィードスルーを装備し、不活性雰囲気ドライボックス内で行うことができます。これは3つの電極のいずれもが電解時に互いに接触しないことが重要です。サイクリックボルタンメトリー試験をポリマーに先立って、堆積したポリマーフィルムは、フィルムから未反応のモノマーを除去するために、モノマーを含まない電解質溶液で洗浄しなければなりません。全ての電気化学的研究のために必要な電位範囲は、モノマー/ポリマーの構造に依存します。したがって、この範囲は、代替モノマー及びポリマーと異なる場合があります。アルコキシ置換基の構造に応じて、モノマーの電解質溶液を調製するために使用される溶媒は、ポリマーを溶解することができます。その場合には、電解中に電極上のポリマー堆積は低速または非存在となり、重合に使用される溶媒を変更しなければなりません。
e_content ">電気活性ポリマーからなるNPの製造のための乳化重合は、均一な形態でのNPを生成する有効な方法である。この研究では、乳化重合法は、電気化学的重合の間に利用同じ酸化重合の機構を利用する;主要な相違点はです化学酸化剤(塩化第二鉄)は、電気化学的重合のレドックス特性を特徴付けるの容易な手段を提供するが、この乳化重合は、従って、電気化学重合により調製されたフィルムの化学組成が同一のNPを生成する。代わりに適用された電気化学ポテンシャルのに使用されモノマーおよびポリマー、乳化重合で容易に拡張可能であり、潜在的に異なる電気活性ポリマーの数で使用することができ、迅速、安価、かつ再現可能なプロセスである。乳化重合は、有機低溶解性を有するポリマーからNPの調製を可能に重合状態から効果的に乳化することができず、水溶液。我々の乳化重合において、有機相は、モノマー、有機溶媒(ヘキサン)、およびドデシルベンゼンスルホン酸(界面活性剤)を含んでいました。水性相を水、塩化第二鉄(酸化剤)、およびPSS-CO-MA(界面活性剤)を含んでいました。乳化重合法はよく水相に分散された有機相を確保するために、超音波処理ステップによって先行されます。超音波処理の間に、それは、バルク加熱を防止するために、氷浴中でエマルジョンを浸すことが必要です。界面活性PSS-CO-MAとDBSA粒子間の静電反発力を介して、水溶液中で合成されたNPの分散を可能にします。これらの界面活性剤はまた、付加的な電荷平衡ドーパントとして作用し、球状のNPの形状を生成することが示されている24のポリマーNPは(795 nmでの吸収ピークによって証明されるように、 図4)、酸化された状態のままで、評論家でありますアルNIR範囲における吸収が必要である、生物医学的用途のために24ゼータ電位分析は、一般的にNP懸濁液の安定性を評価するために行われます。ゼータ電位は、イオンがもはやNP表面と相互作用していないイオンは強くNP表面に関連付けられたシュテルン層と拡散層との界面の電位である。31ゼータ電位測定が充電NPの動きに依存しているときに電動フィールドは、サスペンションに適用されます。具体的には、負に帯電したNPはその逆の正極側に引き寄せ、とされています。コロイド懸濁液は、静電反発力を介して安定化させることができます。それらのゼータ電位を超える+/- 30 MVがある場合に具体的に、懸濁液は安定であると考えられます。我々のNP製剤において、DBSAとPSS-CO-MAからスルホネートおよびカルボキシレート基の存在は、NPの上の負の表面電荷をもたらします。
目の精製E NPは、余分な界面活性剤およびインビトロ細胞実験の前に、任意の未反応出発物質を除去するために重要なステップです。無効な界面活性剤の除去は、有意な細胞死をもたらすことができます。 インビトロ細胞アッセイにおいて、他の場合と同様に、それは、層流フード内で作業し、無菌条件下で動作することが重要です。 NPはまた、滅菌0.2μmのフィルターを通してサスペンションを通過させることによって、使用前に滅菌されるべきです。これは、滅菌濾過後のNP懸濁液の濃度を確認することも重要です。この目的のために、既知の体積の濾過NP懸濁液のフラクションを凍結乾燥質量を得るために乾燥させることができます。 MTT細胞生存率アッセイは、典型的には、培養細胞に、NPを含む、生体物質の効果を研究するために使用されます。この単純なアッセイは、任意の哺乳動物細胞株でのNP懸濁液の細胞適合性の調査に適合させることができます。 MTT比色アッセイは、紫、insolに黄色のテトラゾリウム色素の変換に基づいています次いでDMSOまたは酸性アルコール溶液に溶解することができるUBLEホルマザン結晶。35,36、マルチウェルプレート中のMTT細胞生存率アッセイなどのインビトロ細胞アッセイを行うことにより、細胞播種および操作の一貫性の間の最小の差を達成することが重要ですサンプルを複製します。実験のとの間の前に、播種した細胞は、一貫性の播種と成長を確保するために、顕微鏡下で検査されるべきであり、また、任意の汚染を除外します。最後に、顕微鏡はまた、DMSOを添加した後、ホルマザン結晶の完全な溶解を確認するために利用することができます。
光熱研究は、808-nmの連続レーザーを用いて行きました。連続対パルスレーザの使用は、異なる材料を加熱することができます。これまでの研究では、PTT剤としての金ナノ構造体と光熱変換と光熱アブレーション、37を比較したが、より多くの研究がpolymeriから光熱変換を調査するために必要とされます本明細書に記載されているようなC言語のNP。本研究では、レーザーは、凸レンズに分岐され、6ミリメートルスポットサイズに焦点を当てました。これは、光熱変換結果の違いを引き起こす焦点面での偶発的な変更を防止するための実験を実行したときの光学系を乱さないように注意してくださいすることが重要です。ホットプレートは、試験のために、一定のベースライン温度を温め、維持するために使用されました。
結論として、水性媒体中に懸濁電気活性ポリマーのNPを調製するためのプロトコルが記載されています。根岸カップリングは、3,4-エチレンジオキシチオフェン(EDOT)が、1,4-ジアルコキシ-2,5-ジブロモベンゼンを連結するための有効な方法です。モノマーの電解は、このプロトコルで詳述されています。これは、急速にポリマーフィルムを製造し、その電気的特性を研究するための有効な方法であることが分かります。ポリマーフィルムは、さらに、中性ポリマーのバンドギャップを決定するために、紫外 - 可視 - 近赤外分光法を用いて特徴付けられます。 Electrochemical乳化重合収率は均一な球状の形態を有するサブ100nmでのNP。光熱焼灼療法に加えて、これらのNPは、エネルギー貯蔵やセンサーなどの電気デバイスにおいて多くの潜在的用途を有します。行っ熱及び細胞適合性研究は、これらのNPは光熱剤としての生物医学的用途における潜在的な候補であり得ることを示しています。
The authors have nothing to disclose.
This work was funded in part by the Texas Emerging Technology Fund (Startup to TB), the Texas State University Research Enhancement Program, the Texas State University Doctoral Research Fellowship (to TC), the NSF Partnership for Research and Education in Materials (PREM, DMR-1205670), The Welch Foundation (AI-0045), and National Institutes of Health (R01CA032132).
Name | Company | Catalog Number | Comments |
2 mm diameter platinum working electrode | CH Instruments | CH102 | Polished using very fine sandpaper |
3,4-ethylenedioxythiophene | Sigma-Aldrich | 483028 | Purified by vacuum distillation |
3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) 98% | Alfa Aesar | L11939 | |
505 Sonic Dismembrator | Fisher Scientific™ | FB505110 | 1/8“ tip and rated at 500 watts |
808 nm laser diode | ThorLabs | L808P1WJ | Rated at 1 W |
Acetonitrile anhydrous 99% | Acros | 61022-0010 | |
Avanti J-26 XPI | Beckman Coulter | 393127 | |
Bromohexane 98% | MP Biomedicals | 202323 | |
Dialysis (100,000) MWCO | SpectrumLabs | G235071 | |
Dimethyl sulfoxide 99% (DMSO) | BDH | BDH1115 | |
Dimethylformamide anhydrous (DMF) 99% | Acros | 326870010 | |
Dodecyl benzenesulfonate (DBSA) | TCI | D0989 | |
Dulbecco’s modified eagle medium (DMEM) | Corning | 10-013 CV | |
EMS 150 TES sputter coater | Electron Microscopy Sciences | ||
Ethanol (EtOH) 100% | BDH | BDH1156 | |
ethyl 4-bromobutyrate (98%) | Acros | 173551000 | |
Ethyl acetate 99% | Fisher | UN1173 | |
Fetal bovine serum (FBS) | Corning | 35-010-CV | |
Helios NanoLab 400 | FEI | ||
Hexane | Fisher | H306-4 | |
Hydrochloric acid (HCl) | Fisher | A142-212 | |
Hydroquinone 99.5% | Acros | 120915000 | |
Hydrozine anhydrous 98% | Sigma-Aldrich | 215155 | |
Indium tin oxide (ITO) coated galss | Delta Technologies | CG-41IN-CUV | 4-8 Ω/sq |
Iron chloride 97% FeCl3 | Sigma-Aldrich | 157740 | |
Magnesium sulfate (MgSO4) | Fisher | 593295 | Dried at 100 °C |
SKOV-3 | ATCC | HTB-26 | |
Methanol | BDH | BHD1135 | |
n-Butlithium (2.5 M) | Sigma-Aldrich | 230707 | Pyrophoric |
Poly(styrenesulfonate-co-malic acid) (PSS-co-MA) 20,000 MW | Sigma-Aldrich | 434566 | |
Potassium carbonate | Sigma-Aldrich | 209619 | Dried at 100 °C |
Potassium hydroxide | Alfa Aesar | A18854 | |
Potassium iodide | Fisher | P410-100 | |
RO-5 stirplate | IKA-Werke | ||
SC4000 IR camera | FLIR | ||
Synergy H4 Hybrid Reader | Biotek | ||
Tetrabutylammonium perchlorate (TBAP) 99% | Sigma-Aldrich | 3579274 | Purified by recrystallization in ethyl acetate |
Tetrahydrofuran anhydrous (THF) 99% | Sigma-Aldrich | 401757 | |
tetrakis(triphenylphosphine) palladium(0) | Sigma-Aldrich | 216666 | Moisture sensitive |
Thermomixer | Eppendorf | ||
USB potentiostat/galvanostat | WaveNow | AFTP1 | |
Zetasizer Nano Zs | Malvern | Optical Arrangment 175° | |
Zinc chloride (1 M) ZnCl2 | Acros | 370057000 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved