Accedi

Aldehydes and ketones are prepared from alcohols, alkenes, and alkynes via different reaction pathways. Alcohols are the most commonly used substrates for synthesizing aldehydes and ketones. The conversion of alcohol to aldehyde, which involves the oxidation process, depends on the class of the alcohol used and the strength of the oxidizing agent. For instance, primary alcohol will form an aldehyde when treated with a weak oxidizing agent; however, it gets over-oxidized to a carboxylic acid in the presence of a strong oxidizing agent. Hence, a mild oxidant like pyridinium chlorochromate is used to convert primary alcohols to aldehydes.

Similarly, Swern and Dess–Martin oxidations, which employ weaker oxidizing agents, convert primary alcohols to aldehydes. The strength of the oxidizing agent is irrelevant when converting secondary alcohol to a ketone. Both mild and strong oxidants give ketones from secondary alcohols.

Unsaturated hydrocarbons like alkenes undergo an ozonolysis reaction to give aldehydes and ketones. The product formed depends on the substitution present across the double bond in an alkene. A monosubstituted alkene forms formaldehyde and another aldehyde molecule. However, disubstitution gives rise to two cases. A 1,1-disubstituted alkene upon ozonolysis forms a mixture of formaldehyde and ketone, while a 1,2-disubstituted alkene yields a mixture of aldehydes. Both aldehydes and ketones are formed when trisubstituted alkenes undergo ozonolysis, while tetrasubstituted alkenes form ketones exclusively.

Alkynesalso form aldehydes and ketones under hydroboration-oxidation and acid-catalyzed hydration reaction conditions. The hydroboration-oxidation reaction favors anti-Markovnikov’s addition. Hence terminal alkynes form aldehydes, and internal alkynesyield ketones. On the other hand, the acid-catalyzed hydration reaction follows Markonikov’s addition, and thus both terminal and internal alkynes generateketones.

Tags
AlcoholAldehydeKetoneOxidationOzonolysisHydroboration oxidationAcid catalyzed HydrationPrimary AlcoholSecondary AlcoholAlkeneAlkyneSwern OxidationDess Martin Oxidation

Dal capitolo 12:

article

Now Playing

12.7 : Preparation of Aldehydes and Ketones from Alcohols, Alkenes, and Alkynes

Aldehydes and Ketones

3.3K Visualizzazioni

article

12.1 : Strutture di aldeidi e chetoni

Aldehydes and Ketones

7.5K Visualizzazioni

article

12.2 : IUPAC Nomenclatura delle aldeidi

Aldehydes and Ketones

5.1K Visualizzazioni

article

12.3 : IUPAC Nomenclatura dei chetoni

Aldehydes and Ketones

5.2K Visualizzazioni

article

12.4 : Nomi comuni di aldeidi e chetoni

Aldehydes and Ketones

3.3K Visualizzazioni

article

12.5 : Spettroscopia IR e UV-Vis di aldeidi e chetoni

Aldehydes and Ketones

5.0K Visualizzazioni

article

12.6 : Spettroscopia NMR e spettrometria di massa di aldeidi e chetoni

Aldehydes and Ketones

3.5K Visualizzazioni

article

12.8 : Preparazione di Aldeidi e Chetoni da Nitrili e Acidi Carbossilici

Aldehydes and Ketones

3.2K Visualizzazioni

article

12.9 : Preparazione di Aldeidi e Chetoni da Derivati dell'Acido Carbossilico

Aldehydes and Ketones

2.4K Visualizzazioni

article

12.10 : Addizione nucleofila al gruppo carbonilico: meccanismo generale

Aldehydes and Ketones

4.5K Visualizzazioni

article

12.11 : Aldeidi e chetoni con acqua: formazione di idrati

Aldehydes and Ketones

2.9K Visualizzazioni

article

12.12 : Aldeidi e Chetoni con Alcoli: Formazione Emiacetale

Aldehydes and Ketones

5.1K Visualizzazioni

article

12.13 : Gruppi di protezione per aldeidi e chetoni: Introduzione

Aldehydes and Ketones

6.0K Visualizzazioni

article

12.14 : Acetali e tioacetali come gruppi protettivi per aldeidi e chetoni

Aldehydes and Ketones

3.8K Visualizzazioni

article

12.15 : Aldeidi e chetoni con HCN: panoramica sulla formazione di cianoidrina

Aldehydes and Ketones

2.5K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati