JoVE Logo

Sign In

14.3 : קונבולוציה: מתמטיקה, גרפיקה ואותות בדידים

בכל מערכת LTI (מערכת ליניארית בלתי תלויה בזמן), הקונבולוציה של שני אותות מיוצגת באמצעות אופרטור הקונבולוציה, בהנחה שכל התנאים ההתחלתיים הם אפס. אינטגרל הקונבולוציה יכול להתחלק לשני חלקים: התגובה הטבעית או תגובת הקלט-אפס, והתגובה הכפויה או תגובת המצב-אפס, כאשר t_0​ מציין את הזמן ההתחלתי.

כדי לפשט את אינטגרל הקונבולוציה, מניחים גם שאות הקלט וגם תגובת ההלם הם אפס עבור ערכי זמן שליליים. תהליך הקונבולוציה הגרפי כולל ארבעה שלבים: קיפול, הזזה, הכפלה ואינטגרציה.

נבחן מעגל RC עם אות פולס קלט מוגדר ותגובת פלט. בשלב הראשון מבוצע קיפול על ידי יצירת תמונת מראה של אות הקלט לאורך ציר ה-y. לאחר מכן מבוצעת הזזה, שבה האות המקופל מוזז לאורך ציר הזמן. בשלב הבא מתבצעת הכפלה נקודתית של האות המקופל והמוזז. לבסוף, מתבצעת אינטגרציה של האות המתקבל לאורך זמן, שמספקת את תוצאת הקונבולוציה. תהליך זה ניתן להצגה באופן גרפי.

בקונבולוציה בזמן בדיד, תגובת המערכת נקבעת על ידי החלת אות קלט על מערכת בזמן בדיד ושימוש בתגובת ההלם ובסכום הקונבולוציה. הקונבולוציה של אות הקלט הבדיד [x[n ותגובת ההלם [h[n יוצרת את סכום הקונבולוציה עבור תגובת המערכת:

Equation1

סכום זה מחשב את אות הפלט [y[n בכל שלב זמן בדיד nnn. הבנה של קונבולוציה רציפה ובדידה היא חיונית לניתוח מערכות LTI ולחיזוי התנהגותן בתגובה לקלטים שונים.

Tags

ConvolutionLTI SystemConvolution OperatorConvolution IntegralZero input ResponseZero state ResponseImpulse ResponseRC CircuitFoldingShiftingMultiplicationIntegrationDiscrete time ConvolutionConvolution SumOutput Signal

From Chapter 14:

article

Now Playing

14.3 : קונבולוציה: מתמטיקה, גרפיקה ואותות בדידים

Linear Time- Invariant Systems

223 Views

article

14.1 : מערכות לינאריות קבועות בזמן (LTI)

Linear Time- Invariant Systems

209 Views

article

14.2 : תגובת הלם

Linear Time- Invariant Systems

234 Views

article

14.4 : תכונות הקונבולוציה - I

Linear Time- Invariant Systems

136 Views

article

14.5 : תכונות הקונבולוציה - II

Linear Time- Invariant Systems

168 Views

article

14.6 : דה-קונבולוציה

Linear Time- Invariant Systems

129 Views

article

14.7 : יציבות BIBO של מערכות בזמן רציף ובזמן בדיד

Linear Time- Invariant Systems

331 Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved