Method Article
Ici, nous présentons un protocole pour la formation image et la quantification de la dynamique du calcium dans les populations cellulaires hétérogènes, telles que les cellules des isfètes pancréatiques. Les reporters fluorescents sont livrés dans la couche périphérique des cellules dans l'înet, qui est alors immobilisé et image, et l'analyse par cellule de la dynamique de l'intensité de fluorescence est effectuée.
Les hormones pancréatiques d'istique règlent l'homéostasie de glucose sanguin. Les changements dans la glycémie induisent des oscillations du calcium cytosolique dans les cellules des îcles pancréatiques qui déclenchent la sécrétion de trois hormones principales : l'insuline (à partir des cellules de l'A), le glucagon (cellules de l'A) et la somatostatine (cellules). Les cellules, qui constituent la majorité des cellules des îcaux et sont couplées électriquement les unes aux autres, répondent au stimulus de glucose en tant qu'entité unique. L'excitabilité des sous-populations mineures, des cellules et des cellules (qui représentent environ 20 % (30 %) et 4% (10%) du nombre total total de cellules d'înce de rongeur1 (humain2) est moins prévisible et est donc d'un intérêt particulier.
Les capteurs de calcium sont livrés dans la couche périphérique des cellules dans l'înisolé. L'îlots ou un groupe d'îlots est ensuite immobilisé et photographié à l'aide d'un microscope à fluorescence. Le choix du mode d'imagerie se situe entre un débit plus élevé (champ large) et une meilleure résolution spatiale (confocale). Traditionnellement, la microscopie confocale de balayage laser est employée pour le tissu d'imagerie, car elle fournit la meilleure séparation du signal entre les cellules voisines. Un système à champ large peut également être utilisé, si le signal contaminant de la population dominante de cellules de l'A est réduit au minimum.
Une fois que la dynamique calcique en réponse à des stimuli spécifiques a été enregistrée, les données sont exprimées sous forme numérique comme intensité de fluorescence par rapport au temps, normalisée à la fluorescence initiale et corrigée de base, afin d'éliminer les effets liés au blanchiment de la Fluorophore. Les changements dans la fréquence de pointe ou la zone partielle sous la courbe (pAUC) sont calculés par rapport au temps, pour quantifier les effets observés. pAUC est plus sensible et assez robuste tandis que la fréquence de pointe fournit plus d'informations sur le mécanisme de l'augmentation du calcium.
Des sous-populations cellulaires mineures peuvent être identifiées à l'aide de réponses fonctionnelles à des composés marqueurs, comme l'adrénaline et la ghréline, qui induisent des changements dans le calcium cytosolique dans une population spécifique de cellules d'éclet.
Le but de la méthode est d'imager les changements en temps réel de la concentration cytosolique de calcium ([Ca2']cyt) dans les sous-populations mineures des cellules pancréatiques d'îcle. Cela permet de découvrir les mécanismes régissant la sécrétion hormonale dans ces cellules, révélant des détails sur le cross-talk entre les différents types de cellules et, potentiellement, l'introduction d'une dimension populationdans l'image plus large de la signalisation des îîaux.
Les îlots se composent de plusieurs types de cellules. Outre les cellules plus connues de sécrétion d'insuline, il existe au moins deux sous-populations qui sont également essentielles pour réguler la glycémie3. Les cellules (qui représentent environ 17 % des cellules des îîcres) sécrètent du glucagon lorsque la glycémie devient trop faible, ce qui indique la libération de glucose dans la circulation sanguine provenant des dépôts du foie. Les niveaux excessifs de glucagon (hyperglucagonemia) et le contrôle altéré de glucagon-libération accompagnent (et, techniquement, peuvent contribuer à) l'état prédiabétique de la sensibilité altérée d'insuline4. Cellules (environ 2%) sécrétiser la somatostatine en réponse à l'élévation du glucose. Cette hormone peptidique omniprésente est susceptible d'être présente à des concentrations élevées dans le voisinage des cellules et des cellules à l'intérieur des îlots, qui a un fort effet atténuant de récepteur Gi sur la sécrétion de glucagon et d'insuline.
Les cellules et les cellules de l'aïe partagent une grande partie de la machinerie de détection du glucose avec leurs proches parents, les cellules. Les trois types de cellules sont équipés decanaux K, sensibles à l'ATP, de capteurs métaboliques élaborés5 qui contrôlent le potentiel de membrane plasmatique de ces cellules excitables. En même temps, la sécrétion de l'insuline, de la somatostatine et du glucagon est réglée différemment par le glucose. L'imagerie de la dynamique Ca2 dans les deux sous-populations mineures de cellules d'înet peut donc fournir un aperçu de la conversation croisée entre la glycémie et la production sécrétrice d'înet.
Les premières tentatives de surveillance de l'excitabilité des cellules et des cellules à l'aide de cellules de patch-clamp ont été bientôt suivies par l'imagerie de Ca2 dans les cellules simples et les cellules. L'identité des cellules de ces expériences a été vérifiée par une coloration posteriori avec des anticorps anti-glucagon ou anti-somatostatin. Ces efforts ont souvent été entravés par la constatation que les cellules des înets se comportent très différemment dans l'în et comme cellules individuelles. Bien que les cellules de l'apo puissent sembler être les principaux bienfaiteurs de l'arrangement d'îîdre (en raison de leur majorité écrasante qui sous-tend leur fort couplage électrique), l'écart principal a été, étonnamment, trouvé dans les cellules de l'a.-. Dans l'înet intact, ces cellules sont constamment et constamment activées à faible teneur en glucose, ce qui n'est vrai que pour environ 7 % des cellules d'A disséminées6. On croit donc que la déclaration de l'activité des cellules et des cellules à l'intérieur des îlots intacts représente une approximation plus étroite des conditions in vivo.
En général, il existe deux façons de signaler la dynamique Ca2, spécifiquement à partir des sous-populations de cellules ou de cellules de cellules : (i) exprimant un capteur Ca2 codé génétiquement par l'intermédiaire d'un promoteur spécifique aux tissus ou (ii) à l'aide de composés marqueurs. L'ancienne approche plus élégante ajoute l'avantage substantiel de la véritable imagerie 3D et donc l'étude de la distribution cellulaire dans l'înt. Il ne peut toutefois pas être appliqué pour le matériel humain intact d'islet. Une autre préoccupation potentielle est la « fuite » du promoteur, en particulier lorsque la transdifférenciation des cellules de l'A-/O ou la réponse des cellules à un taux élevé de glucose est en place. Cette dernière approche peut être utilisée avec des tissus fraîchement isolés, y compris des échantillons humains ou des îlots cultivés. Les données, cependant, sont recueillies uniquement à partir de la couche périphérique des cellules des îlot, comme la livraison de la molécule de colorant / marqueur dans des couches plus profondes sans altérer l'architecture des îlot est difficile. Un avantage inattendu de cette dernière approche est la compatibilité avec le mode d'imagerie à large champ, qui permet d'étendre les expériences à l'imagerie simultanée de dizaines ou de centaines d'îlots (c'est-à-dire des milliers à des dizaines de milliers de cellules).
Le calcium est représenté in vivo à l'aide de capteurs familiaux GCaMP7 (ou péricam8)codés génétiquement, qui sont des variantes de protéines fluorescentes vertes permutées circulairement (GFP) fusionnées à la protéine liant le calcium calmodulin et à sa séquence cible, fragment M13 de la chaîne lumineuse de myosinekinase 7,9. Les GCAMP ont de superbes rapports signal-bruit dans la gamme des concentrations nanomolaires Ca2 et une coupe haute de 2 photons, ce qui en fait un choix idéal pour le travail in vivo10,11. L'aspect difficile de l'utilisation de capteurs recombinants est leur livraison dans les cellules. L'expression hétérologue nécessite l'utilisation d'un vecteur viral et de la culture ex vivo de plusieurs heures, ce qui soulève fréquemment des préoccupations concernant la dédifférenciation potentielle ou la détérioration des fonctions cellulaires. Bien que les modèles de souris préconçus pour exprimer GCaMP résoudre ce problème, ils ajoutent de nouveaux défis en augmentant le délai d'exécution de manière substantielle et en limitant le travail à un modèle non-humain. La sensibilité très élevée aux changements du pH intracellulaire est un autre côté défavorable des capteurs à base de protéines12, qui est, cependant, moins d'un problème pour la détection des signaux oscillatoires, tels que Ca2.
L'avantage des colorants trapables (tels que fluo4 fluorescent vert) est qu'ils peuvent être chargés dans des tissus fraîchement isolés en l'espace d'environ une heure. Comme on pouvait s'y attendre, les colorants trapousables ont des rapports signal-bruit plus faibles et (beaucoup) une photostabilité inférieure à celle de leurs homologues recombinants. Nous ne pouvons pas confirmer13 les rapports de toxicité des colorants trapuables14,cependant, la surcharge de colorant est un problème fréquent.
Les capteurs recombinants rouges Ca2MD basés sur la permutation circulaire ont évolué rapidement depuis 201115, et les développements les plus récents présentent une forte concurrence aux GCAMPs16 pour l'imagerie tissulaire, étant donné une plus grande profondeur de pénétration de la lumière rouge. Les colorants trapu séchables rouges disponibles dans le commerce peuvent être utilisés de façon fiable pour l'imagerie unicellulaire, mais, au niveau des tissus, ne peuvent pas rivaliser facilement avec les analogues verts.
Il y a apparemment très peu de choix de technologie d'imagerie pour des expériences dans les tissus où la lumière floue devient un problème critique. Le système confocal fournit une résolution acceptable à cellule unique par l'annulation de la lumière floue avec tout objectif sur le NA supérieur à 0,3 (pour le cas de GCaMP6) ou 0,8 (teinture trapusable). D'un point de vue technique, un microscope confocalconventionnel peut être utilisé pour l'imagerie simultanée decyt de centaines (GCaMP) ou de dizaines d'îlots (teinture trapue). La seule alternative réaliste au mode confocal en cas d'expression 3D du capteur dans le tissu est peut-être la microscopie de feuille de lumière.
Les choses sont légèrement différentes pour le cas lorsque le capteur est exprimé dans la couche périphérique des cellules dans le tissu de l'îît. Pour les capteurs recombinants lumineux qui ont un modèle d'expression intracellulaire vif, l'utilisation d'un mode d'imagerie à champ large avec un objectif de faible-NA peut fournir une qualité suffisante et récompenser le chercheur avec une augmentation substantielle dans la zone de champ de vision et donc le Débit. Un système à champ large offre une résolution spatiale plus faible, car la lumière floue n'est pas annulée; par conséquent, le tissu d'imagerie avec des objectifs de haute-NA (faible profondeur de champ) est moins instructif, car le signal unicellulaire est largement contaminé par les cellules voisines. La contamination est beaucoup plus faible pour les objectifs de faible niveau de l'AN (haute profondeur de champ).
Il y a cependant des tâches pour lesquelles un débit élevé et/ou un taux d'échantillonnage deviennent un avantage essentiel. Les cellules et les cellules de l'ue présentent une hétérogénéité importante, ce qui crée une demande de tailles d'échantillons élevées pour révéler la contribution des sous-populations. L'imagerie à large champ est rapide et plus sensible, avec un système de champ de vision à grande échelle industrielle qui imagerie des centaines (GCaMP) ou des dizaines (Fluo4) d'îlots au même rapport signal-bruit que les expériences confocales sur dix ou un seul îlots, respectivement. Cette différence de débit rend le système à champ large avantageux pour l'imagerie de la population avec une résolution à cellule unique, ce qui peut être particulièrement critique pour les petites sous-populations telles que la cellule à cellules. De même, les tentatives de reconstruction de l'activité électrique de Ca2MD spiking 17 bénéficieraient du taux d'échantillonnage plus élevé fourni par un mode d'imagerie à champ large. Dans le même temps, plusieurs problèmes de « niche » comme l'activité des cellules pancréatiques sur la stimulation de la sous-population dominante de cellules de la cellule, nécessitent l'utilisation d'un système confocal. Un facteur qui influence la décision vers le mode confocal est la présence d'un signal contaminant important provenant de la sous-population des cellules de l'A.
Bien que l'utilisation de la coloration des anticorps spécifiques aux hormones pour vérifier l'identité des cellules après les expériences d'imagerie est toujours une option, les sous-populations cellulaires mineures peuvent être identifiés à l'aide de composés marqueurs fonctionnels, tels que l'adrénaline et la ghréline qui ont été montrés pour stimuler sélectivement la dynamique Ca2 dans les cellules18 et19,20, respectivement.
L'analyse des données d'imagerie en accéléré vise à fournir des informations au-delà de la pharmacologie triviale, comme l'hétérogénéité de la population, la corrélation et l'interaction de différents signaux. Traditionnellement, les données d'imagerie sont analysées en intensité par rapport au temps et normalisées à la fluorescence initiale (F/F0). La correction de base est fréquemment nécessaire, en raison du blanchiment du signal fluorophore ou de la contamination par des changements dans l'autofluorescence ou le pH (généralement induit par des niveaux millimolaires de glucose12). Les données Ca2 peuvent être analysées de différentes façons, mais trois grandes tendances sont de mesurer les changements dans la fréquence des pointes, la fraction de plateau, ou la zone sous la courbe, calculé par rapport au temps. Nous avons trouvé cette dernière approche avantageuse, en particulier dans l'application de données confocales fortement sous-échantillonnées. L'avantage de la mesure pAUC est sa sensibilité aux changements de la fréquence et de l'amplitude du signal, alors que le calcul de la fréquence nécessite un nombre important d'oscillations21, ce qui est difficile à atteindre à l'aide de l'imagerie conventionnelle. Le facteur limitant de l'analyse pAUC est sa grande sensibilité aux changements de base.
Toutes les méthodes décrites ici ont été élaborées conformément à la Loi de 1986 sur les animaux (procédures scientifiques) du Royaume-Uni et aux lignes directrices éthiques de l'Université d'Oxford.
1. Isoler les îlots pancréatiques de souris
2. Chargez le colorant ou exprimez le capteur
3. Imagerie Ca2 dynamique
4. Analyse des données
Les îlots se chargent assez bien avec les colorants trapoutables (figure 1A),à moins que la composition lipidique de la membrane n'ait été affectée (p. ex., par exposition chronique aux acides gras). Le vecteur humain de type 5 (Ad5) de type adénovirus (Ad5) cible également toutes les cellules des îîchers (figure 1B). Des problèmes peuvent survenir lorsque plus d'un capteur recombinant est exprimé dans la même cellule. En outre, les îlots sont généralement très bien immobilisés en utilisant la technologie décrite ci-dessus, qui offre une stabilité exceptionnelle et un accès à la solution.
Les pieux Ca2mD dans les cellules à revenu comprimé peuvent être facilement détectés à de faibles niveaux de glucose (figure 2). Il y a une corrélation cellulaire par cellule élevée entre l'activité à faible teneur en glucose et la réponse à l'adrénaline et au glutamate. Ghrelin active certaines cellules réactives à l'adrénaline (cellules de l'ae-œil?) à faible teneur en glucose, mais elle n'a aucun effet sur la dynamique Ca2 dans la plupart des cellules qui sont activées par un faible taux de glucose(cellules).
Lorsqu'il est analysé en termes de fréquence partielle (Figure 4A,C), l'adrénaline ou la ghréline stimulées cellules montrent une augmentation substantielle dans les conditions tout ou rien. C'est-à-dire, une cellule avec une faible activité basale qui est activée par l'adrénaline ou la ghréline montre une augmentation spectaculaire de cette mesure. Cependant, les changements globaux entre le pieux basal et l'effet d'adrénaline sont très subtils (Figure 4A,C). En revanche, l'AUC partielle est sensible aux changements introduits par l'adrénaline dans toutes les cellules, même lorsque l'activité basale est élevée (Figure 4B,D).
Figure 1 : Chargement du colorant trapoutable et expression du capteur recombinant dans les îlots. Îlots de souris typiques chargés avec le colorant trapu Fluo-4 (A) ou exprimant le capteur recombinant GCaMP6 dans la couche périphérique des cellules (B) ou dans la couche plus profonde (C). La sulforhodamine B (SRB, présentée en blanc) a été utilisée pour décrire les cellules individuelles dans chaque islet25. (D) Cinétique représentative de Ca2 en réponse au glucose enregistré à partir de cellules individuelles dans l'înt à l'aide de Fluo4. Notez l'hétérogénéité dans les populations cellulaires mineures. Veuillez cliquer ici pour voir une version plus grande de ce chiffre.
Figure 2 : Réponse ca2 typique des cellules des islets à divers stimuli. Typique de la dynamique des cellules de la cellule A (A) et de la cellule B (B) Ca2, en réponse à l'adrénaline, au glutamate, à la ghréline, au glucose. (C)-(D) Cartes thermiques de la réponse des cellules de l'îlots montrant des sous-populations d'adrénaline positive (C) et de ghréline positive (D). Veuillez cliquer ici pour voir une version plus grande de ce chiffre.
Figure 3 : Correction de base. Veuillez cliquer ici pour voir une version plus grande de ce chiffre.
Figure 4 : Analyse des données sur le laps de temps. Analyse de la dynamique Ca2 dans les cellules de l'a.-c. Fréquence partielle (A), fraction de plateau (B) et zone sous la courbe (C) d'un '-cellules [Ca2 ']i trace. Populational [Ca2 ]i données d'un îct pancréatique de souris exprimées comme premières (F/F0) (D), fréquence partielle (E), fraction de plateau (F) et zone sous la courbe (G). Veuillez cliquer ici pour voir une version plus grande de ce chiffre.
Il y a trois étapes dans le protocole qui sont essentielles au succès global. L'injection réussie de l'enzyme Liberase dans le conduit biliaire détermine non seulement le succès quantitatif de la procédure d'isolement, mais affecte également la qualité des îlots isolés. Pancreata non gonflé peut avoir comme conséquence l'absence de quelques réponses métaboliques importantes dans les îlots isolés. Deuxièmement, le chargement du colorant/l'expression du capteur définit le rapport signal-bruit de l'enregistrement time-lapse. Les signaux sont absents ou atténués dans les îlots surchargés. Enfin, le positionnement réussi et dense du tissu à l'intérieur de la chambre d'imagerie est un moment déterminant pour des expériences significatives et analysables. Les tissus mal positionnés ou mal placés entraînent une perte de temps expérimental et/ou des données peu claires.
La méthode peut être modifiée pour tenir compte de plusieurs signaux (à l'aide du système confocal) et de plusieurs groupes d'îlots (p. ex., de différents génotypes). L'imagerie de signaux multiples suppose la livraison d'un deuxième capteur dans chaque cellule de l'înet, spectralement compatible avec le journaliste Ca2 (comme un capteur de pH SNARF5f26,27). À cette fin, les îlots peuvent être co-chargés/co-infectés avec des capteurs Ca2 et pH, qui sont ensuite images séquentiellement dans chaque laps de temps.
L'imagerie du signal en groupes d'îlots avec résolution d'une seule cellule nécessite l'utilisation d'un large champ de vision objectif. L'objectif est susceptible d'avoir un grossissement et une ouverture numérique (NA) plus faibles, réduisant ainsi la résolution spatiale. En raison de la profondeur de mise au point accrue de l'objectif de faible niveau DNA, l'imagerie peut être réalisée sur un système à champ large. Les inconvénients de cet arrangement sont la contamination croisée cellulaire du signal lumineux et la capacité réduite d'imager le signal 3D (p. ex., les souris exprimant le capteur Ca2MD sous les promoteurs d'insuline). Dans le même temps, le signal exprimé à partir des cellules des îlots de surface peut être parfaitement résolu avec une résolution temporelle élevée de groupes comprenant des dizaines à des centaines d'îlots18.
Bien qu'il puisse sembler désagréable, mais l'exécution de l'analyse d'image et l'analyse des données numériques dans des logiciels distincts est une bonne idée. À l'heure actuelle, ImageJ/FIJI domine l'analyse d'images scientifiques. Les environnements les plus populaires pour le codage scientifique sont Python et Matlab, mais il ya aussi des efforts connus pour analyser les données Ca2 dans R28. La meilleure facilité d'utilisation est fournie par plus de paquets de niche comme IgorPro. Notre choix est de prototyper dans Matlab/Python, puis d'implémenter le code dans IgorPro pour l'utilisation de 'pipeline'. L'adaptation des paquets d'analyse de signal pour l'électrophysiologie (p. ex. Clampfit, Neuroexplorer) aux besoins analytiques peut être utile pour l'imagerie unicellulaire, mais il est difficile de l'étendre. De nombreuses options offertes par ces forfaits ne s'appliquent pas à l'imagerie des islets en raison du faible taux d'échantillonnage.
Il est important de se rappeler que cette méthodologie est limitée par un certain nombre de facteurs. Tout d'abord, comme mentionné ci-dessus, l'imagerie est largement basée sur le sous-échantillonnage des données, ce qui signifie qu'elle n'indique pas et ne peut donc pas être directement comparée à l'activité électrique de la cellule. Deuxièmement, les données proviennent de la périphérie de l'îît et ne reflètent pas d'importants processus de couplage qui sont, de façon générale, tridimensionnels. Troisièmement, le niveau de chargement/expression affecte la perception de l'intensité du capteur. Enfin, l'activation de sous-populations de cellules d'îts moins recherchées (p. ex., cellules PP et cellules) par les composés marqueurs ne peut être exclue, bien qu'en raison du faible nombre de ces cellules dans l'în, toute contamination potentielle soit minime.
La méthode est un véritable «champion» en termes d'effet visuel, que les processus oscillatoires offrent une forte impression d'un tissu véritablement vivant. Appliquée aux sous-populations cellulaires mineures, la méthode sonde la fonction de chacun de façon fiable, permettant l'identification des sous-groupes et reflétant l'hétérogénéité.
La dynamique du calcium a été étudiée dans les cellules des îcles pancréatiques depuis plus de 40 ans, principalement grâce aux progrès de la technologie d'acquisition/détection. Les premières études ont utilisé la spectroscopie d'absorption atomique29, mais ce n'est qu'à l'arrivée des capteurs fluorescents Ca2 30 que la cinétique détaillée a pu être résolue dans les cellules des îcles individuels, en utilisant la photométrie31,32,33. Peu de temps après, la composante spatiale de la cinétique Ca2 a été améliorée à mesure que l'imagerie Ca2 34 ,35,36 est devenue une technologie de routine, grâce aux détecteurs d'appareils couplés de charge (CCD) alors nouvellement disponibles. Le problème de la lumière hors foyer, qui a entravé l'imagerie du signal des cellules individuelles dans le tissu, a alors été résolu dans le milieu des années 90 par le biais de la microscopie confocale de balayage laser (LSCM)37 et de la microscopie interne totale de fluorescence de réflexion (TIRFM)38. Les deux méthodes, complétées par l'arrivée d'une nouvelle génération de capteurs fluorescents Ca2 avec un laser de 488 nm, ont été utilisées avec succès pour l'image de la dynamique Ca2 dans les sous-populations de cellules d'înet39,40,41.
Le nouveau siècle a mis en avant deux nouvelles tendances qui ont découlé des développements technologiques liés aux neurosciences. Tout d'abord, les capteurs fluorescents recombinants basés sur la permutation circulaire des variantes de GFP ont considérablement augmenté le rapport signal-bruit pour la détection Ca2, amenant efficacement les études au niveau des grandes populations cellulaires, dans lesquelles la dynamique ducyt [Ca2]dans chaque cellule pourrait être résolue. Deuxièmement, l'utilisation de promoteurs spécifiques aux tissus a permis de cibler l'expression du capteur aux sous-populations mineures.
Bien que généralement pensé pour refléter les développements en neurosciences, les études sur l'îc Ca2 dynamique ont deux différences clés. Tout d'abord, technologiquement, toute imagerie in vivo de la signalisation des îlots est plus complexe que l'imagerie dans le cerveau en raison de l'anatomie imprévisible du pancréas et l'emplacement des îlots42. Deuxièmement, un excellent couplage électrique entre les cellules de l'îlots Eta, rend essentiellement les îlots en populations électriquement inertes affichant une réponse apparemment parfaite tout ou rien au stimulus élevé de glucose. Nous croyons que les études de [Ca2']i cinétique dans les sous-populations mineures d'islet, telles que les cellules de ', basées sur le ciblage tissulaire-spécifique sont susceptibles d'élargir nos connaissances de leur pharmacologie/physiologie. Dans le même temps, des sondes très sensibles permettent d'étendre la puissance statistique de ces mesures, en tenant compte de la variabilité de l'îlots à l'îlots et en permettant l'imagerie d'îlots de différents groupes au sein d'une expérience parallèle.
Les auteurs ne déclarent aucun conflit d'intérêts.
AH a reçu un doctorat sur le diabète au Royaume-Uni, EV a été soutenu par le programme de formation OXION-Wellcome Trust, AIT a tenu une bourse postdoctorale Oxford Biomedical Research Council.
Name | Company | Catalog Number | Comments |
40x/1.3 objective | |||
Axiovert 200 microscope | |||
emission | |||
Excitation | |||
Fetal bovine serum | Sigma-Aldrich | F7524-500ML | |
Fluo4 | Thermo Fisher (Life Technologies) | F14201 | |
GCaMP6f, in (human type 5) adenoviral vector | Vector Biolabs | 1910 | |
Hanks' solution | Thermo Fisher (GibCo, Life Technologies) | ||
Liberase | Sigma-Aldrich | 5401020001 | |
penicillin/streptomycin | Thermo Fisher (GibCo, Life Technologies) | 15140122 | |
RPMI medium | Thermo Fisher (GibCo, Life Technologies) | 61870044 | |
Zeiss LSM510-META confocal system | Carl Zeiss |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon