Method Article
* 这些作者具有相同的贡献
本协议详细描述了如何制造和操作微流控器件, 用于 X 射线衍射数据的室温采集。此外, 还介绍了如何通过动态光散射监测蛋白质结晶, 以及如何处理和分析获得的衍射数据。
该协议描述了量角器基于固定目标序列晶体学的低 X 射线背景下制备微流控器件。该装置采用软光刻法从环氧树脂胶中进行图案化, 适用于室温下的原位X 射线衍射实验。样品井在双方盖与聚合物聚酰亚胺箔窗口允许衍射数据收集以低 x 射线背景。这种制造方法是不昂贵和廉价的。在 SU-8 主晶片的采购之后, 所有的制造都可以在实验室环境中的洁净室之外完成。芯片设计和制造协议利用毛细管阀门 microfluidically 将水反应分解成定义 nanoliter 大小的水滴。这种加载机制避免了通道死容量样本损失, 可以很容易地执行手动不使用泵或其他设备的流体驱动。我们描述如何通过动态光散射来控制蛋白质晶体成核和生长的 nanoliter 大小的蛋白质溶液的分离被监测原位。在适当的晶体生长后, 可以使用基于量角器的原位固定目标序列 x 射线晶体学在室温下收集完整的 x 射线衍射数据集。该协议提供了自定义脚本, 用于处理衍射数据集, 使用一套软件工具来解决和细化蛋白质晶体结构。这种方法避免了在常规结晶学实验中, 在低温保存或人工晶体处理过程中可能诱发的文物。我们提出和比较了三种蛋白质结构的解决使用小晶体的尺寸约10-20 µm 生长在芯片。通过结晶和衍射原位, 处理和因此脆弱的晶体的机械扰动最小化。该协议详细介绍了如何制作适合原位串行晶体学的自定义 X 射线透明微流控芯片。由于几乎每个晶体都可以用于衍射数据收集, 这些微流控芯片是一种非常有效的晶体传递方法。
了解蛋白质的3D 结构对于理解其功能至关重要。近原子分辨率结构是迄今为止最常见的 X 射线晶体学。该技术将蛋白质晶体暴露于 x 射线辐射中, 进而分析了产生的衍射模式, 用于结构的确定和细化。在传统的 x 射线晶体学中, 一个完整的衍射数据集是从一个单一的, 理想的大, 在低温温度的晶体记录。然而, 这种晶体大多不是微不足道的生长, 并确定适当的冷冻保存条件本身可能会变得具有挑战性, 有时也可能导致偏差从原生蛋白结构5。
最近在 x 射线自由电子激光器和同步辐射同步辐射的技术进步已经允许解决结构从较小的晶体, 作为新的微聚焦同步辐射, 增加 x 射线光束的辉煌, 和改进的 x 射线探测器成为可用的6,7。通常, 小晶体比大的和缺陷的自由晶体更容易生长8,9。然而, 小晶体遭受 X 射线辐射损伤比大晶体快得多。这是因为比起一个大的晶体, 更高的 X 射线剂量必须投射到一个较小的晶体体积, 以衍射可比分辨率。因此, 即使是低温保护也往往不足以记录一个完整的衍射数据集从一个单一的晶。
为了克服这一障碍, 串行晶体学已成为从许多随机定向的纳米微晶中收集和合并衍射图案以获得完整数据集的选择方法。辐射引起的晶体损伤最小化, 通过传播用于解决高数量晶体的蛋白质结构的总 X 射线剂量5,10。在一个 ' 衍射之前销毁 ' 自由电子实验, 每个晶体只用于一个曝光使用飞第二 X 射线脉冲。第三代同步辐射源的微聚焦同步辐射反过来可以执行串行晶体学, 其时间为几毫秒短 X 射线曝光11,12,13,14。但是, 在数据收集过程中, 如果没有晶体振荡或旋转, 则只能记录部分布拉格反射, 因此结构确定15通常需要数以万计或更多的衍射模式。到目前为止, 已为串行晶体学开发了一系列不同的样例传递方法, 最近已回顾了14、16、17、18、19。其中, 在 X 射线曝光期间, 几个固定目标的样本交付策略成功地与晶体旋转结合在一起, 从而大大减少了衍射模式, 可以提供同样完整的数据集, 同时消耗较少样品与经典的系列结晶学实验相比, 仍然有图像被记录7,16,20,21,22,23,24。
提出了一种利用低 x 射线背景制备微流控器件的协议。该装置采用软光刻法从5分钟的环氧树脂胶中进行花纹, 适用于室温下的原位x 射线衍射实验, 其结果是将样品制备直接纳入 x 射线的设置中, 如经过时间分辨的研究, 遵循混合诱导的动力学18,19。微流控通道是盖在两侧与聚合物聚酰亚胺箔, 导致 x 射线窗口与联合厚度约16µm, 允许低 x 射线背景成像。所有使用的材料都提供良好的耐溶剂性。这种制作方法比较简单, 价格低廉。在 SU-8 主晶片的采购后, 所有的制造都可以在一个洁净室内完成一个典型的研究实验室设置。
在一个应用示例中, 我们描述了基于量角器的固定目标序列晶体学的芯片。首先, 讨论了用毛细管阀门 microfluidically 将水反应分解成选定数量的 nanoliter 液滴的设计和制作注意事项。这种加载机制避免了通道死容量的样本损耗, 并且可以在不使用泵或其它液体驱动设备的情况下手动进行拆分。通过动态光散射 (dl) 控制蛋白质晶体的成核和生长, 对这种孤立的 nanoliter 大小的蛋白溶液进行了监测原位。以前已经证明, dl 测量可以在微流控设备上执行, 该装置由连接到玻璃滑块25、26的烷结构组成。由于聚酰亚胺层具有比 550 nm 长的波长的高传输, 因此在使用适当的激光波长27、28时, 该方法可以扩展到 X 射线透明芯片中的测量。在 dl 结果的基础上, 可以观察到初始成核, 并可以停止进一步的雾滴蒸发以获得较少但更大的蛋白质晶体。
在足够的晶体生长后, 可以使用基于量角器的原位固定目标序列 x 射线晶体学在室温下收集完整的 x 射线衍射数据集。使用一套软件工具和定制脚本处理衍射数据集, 以解决蛋白质晶体结构。这种技术避免了传统晶体学实验中常用的低温保存过程中产生的人工制品。
我们比较了三个蛋白质靶结构, 解决使用约10-20 µm 小晶体生长在芯片, 更好, 然后2Å分辨率。通过结晶和衍射原位, 处理和因此脆弱的晶体的机械扰动最小化。该协议适用于衍射高分辨率和低分辨率的蛋白质晶体 (1.7 Å到3.0 Å)。几乎每一个晶体都可以用于衍射, 小样本被浪费了, 这使得这是一个非常有效的水晶传递方法。
本协议提供了如何为原位蛋白质结晶和衍射数据收集准备 X 射线透明微流控芯片的详细指南。该程序是精心设计的, 以得益于微流控精度, 而不需要先进的设备在实验室。此外, 在同步加速器光束线的数据收集可以不需要专门的量角器或加湿器来缓解非专家的结果再现。所提出的技术可应用于室温下的串行毫秒结晶学数据采集, 同时保持辐射损伤最小, 不引入低温保护或晶体处理对晶体生长后的应力。因此, 所述方法适用于任何蛋白质结晶项目。
1. 芯片设计和主制造
2.原位X 射线芯片制作
3. 流体输送用端口
4. 表面处理
5. 蛋白质制备
6. x 射线芯片中的蛋白质结晶
7. 晶片结晶井的动态光散射测量
注意: 用100兆瓦的激光输出功率进行 dl 测量, 波长为 660 nm, 在142°的散射角检测到散射光。因为所有被调查的样品解答是水的折射率 (n = 1.33) 在所有演算使用了。
8. 衍射数据收集
9. 数据评估
环氧树脂是 x 射线芯片制造的一种优良的填充材料。在不需要专用工具 (图 1) 的情况下, 该方法成本低廉、简单且健壮。通过稀释 40 wt% 乙醇, 降低环氧树脂黏度, 促进了结晶井以上多余树脂的去除, 形成了 X 射线的定义窗口。较高的乙醇稀释导致了固化树脂的缺陷。通过分析 x 射线芯片的截面, 我们确定了两侧的总窗口厚度约为19µm 厚, 这是非常接近的名义厚度的使用聚酰亚胺箔的 2 x 7.5 µm (图 2)
结晶试验被隔离成几个 nanoliter 大小的反应隔间, 使用毛细管阀机制, 如前所述41。这种 "存储然后创建" 加载技术避免了通道死容量的样本损失, 并且可以很容易地手动执行, 从而无需使用泵或其他设备进行流体驱动42。在装入水样品之前, 晶片上加了含氟油。在油-水界面之间的表面张力在吸油和水样品之间导致压力区别在接口。这种拉普拉斯压力取决于曲率半径和界面的表面张力。为了最小化它的能量, 接口必须最小化它的表面, 等效于最大化它的主要曲率半径在恒定的容量。宽通道中的低曲率接口在窄通道段中具有较低的拉普拉斯压力, 然后是高曲率接口。因此, 样品插头优先进入和流经宽旁路通道, 而不是流经狭窄的毛细管阀限制。最后, 样品插头后面是含氟油, 将样品井分离成独立的水滴。
可靠和可靠的负载实现了, 流量高达1毫升/小时的两个, 串行和并行井安排 (图 3)。在 "串行" 布局中, 井口和毛细管阀收缩通过旁路通道31依次连接。相比之下, 在 "平行" 布局中, 两个独立的主通道连接所有井口或毛细管阀仅为43。这两种排列概念以前都与配方控制结合在一起, 这是蛋白质结晶43,44的一个有用方面。串行设计只有两个流体端口, 一个入口和一个出口。它有较少的液体端口, 因此, 建立和操作起来更简单。平行布置有4个流体端口, 2 用于连接油井的主通道和2用于连接毛细管阀以使空气或多余的油逸出。因此, 加载可以从主通道两侧进行。由于其较短的旁路, 这种布局对相同数量的井具有整体较低的流量阻力。因此, 它更适合于有大量油井的高比例设备。此外, 样本井的方向更接近, 这为自动化成像提供了优势。
对于两种布局, 如果是作为两个高度或三高度设计的, 则观察到完整的采样井加载。在双高设计中, 样品井和旁路通道的高度相等。三高度的设计需要第三个掩码, 一个额外的 SU8 层和一个对齐步骤, 以进一步确保样品井变得比前面的旁路通道高。这种高度差通过相同的毛细管阀门原理, 促进进入井内的样品液, 从而阻止了收缩的流动。在这里, 高井天花板对应于推进半月板的更低的拉普拉斯压力和沿旁路方向的流动是仅倾向的在井完全地填装了之后, 因此阀门收缩阻拦进一步流动并且转移它下来旁路。然而, 成功的装货并不严格要求井比旁路更高, 因为适当的毛细管阀门也可以通过调整通道宽度相应地达到。然而, 根据我们的经验, 在所有三高的设计中, 比起两高当量, 高水井表现出更大的健壮性和缺陷的自由载荷, 最高可达十倍以上的流速。这种效果在并行布局中更明显。
为了模拟气相扩散结晶动力学, 利用聚酰亚胺箔的有限渗透率来控制水的蒸发时间。通过将水滴表面积和井高高度 (图 4C) 等同起来, 通过监测液滴体积的变化来量化实验蒸发速率。在 X 射线芯片中结晶井的蒸发不会以线性方式进行, 因为随着溶质浓度的增加, 下降的表面面积随着时间的推移而减少, 而蒸发率则会降低45。最初的蒸发跟随了大约线性率大约 0.5 nL h-1在系列布局几何的井。
为了更好地了解结晶动力学, 在微流控芯片的结晶井中进行了 dl 测量。对于初始的 dl 测量, 在玻璃滑梯上粘合的一芯片, 用于为光散射实验提供更好的光学性能。该芯片与 X 射线芯片具有相同的井尺寸。在 X 射线芯片45中, 比聚酰亚胺窗口的聚酰亚胺具有更高的水汽渗透性。由于磁通量与距离呈线性变化, 聚酰亚胺窗口井的蒸发轨迹可以与相应厚度的对应的一扇窗相匹配。
dl 结果表明, 半径分布随时间而变化 (图 4A-b), 表明 dl 测量允许在第一个晶体粒子被观测之前检测出初始核形。这一信息可用于核化和生长单晶, 通过外部调节蒸发速率, 从而使饱和度水平, 在初期阶段的核心46。
X 射线芯片是固定在3D 打印适配器的 SBS 兼容板量角器在 EMBL 光束线的同步辐射 P14 在佩特拉 III (图5A)。或者, 可以使用较小的3D 打印帧将 X 射线芯片装入标准光束线测角仪21。奇异果甜蛋白晶体的大小为 10-20 µm(图 5B), 衍射高达2.0 Å的分辨率(图 5C)。正如预期的那样, 这两个薄型聚酰亚胺箔窗口从 x 射线芯片的 x 射线背景贡献仅限于聚酰亚胺聚合物散射环在11Å (2θ ~ 5°) 和33Å (2θ 1.7°) 为 x 射线波长0.97 Å。这两个环不干扰数据处理。收集了一个具有83奇异果甜蛋白晶体的总数据集, 每帧1°旋转的每个晶体中记录了10种衍射图案。在表 3和中列出了数据处理和细化参数, 以及奇异果甜蛋白数据集的统计数据, 并与其他两个葡萄糖异构酶和 thioredoxin 的数据集进行了比较, 它们也收集了就地. 表 4。
通过将奇异果甜蛋白数据集分解为五个子数据集 (每个子集使用两个衍射模式来维护完整的数据集), 研究了规范化衍射功率随时间推移的强度衰减。如图 6B所示, 在第一个子数据集之后, 衍射功率开始下降, 第四个子数据集中低于50%。因此, 子数据集的 Rmeas 值也随着时间的推移而增加, 这表明数据收集过程中的 X 射线辐射损伤。我们推测在 X 射线照射过程中产生的自由基会迅速降低同一个反应室中相邻的晶体。例如, 这种次要的 x 射线损伤在相关的实验方法中没有明显的显著性, 晶体已经分布在聚酰亚胺三明治21中较大的区域。为了最大限度地减少 x 射线的损伤, 必须在室温下收集来自特定晶体的少量衍射图案。此外, 每隔间的微流控芯片上只应暴露一个单一的蛋白质晶体。尽管如此, 使用已处理数据集细化的所有结构模型都显示了非常好的立体和适当的统计 (表 4)。此外, 所有的最终电子密度图是非常好的质量。
在以往对 X 射线透明芯片的晶体学方法中 , 晶体的取向和排列必须刻意地纵以获得晶体方向的随机分布40或由晶体运动获得。在液层21中。为了评价本协议所描述的 X 射线透明微流控芯片的晶体取向, 确定了所有暴露晶体在实验室坐标系下的单元细胞定向。对于双锥构型奇异果甜蛋白晶体, 观察到轻微的偏爱(图 7A), 而我们获得了葡萄糖异构酶晶体的广泛分布(图 7B)。我们推测, 在纳米尺度上, 大多数材料都表现出明显的粗糙度。因此, 晶体可以自发地在表面上具有明显的偏低的取向。这样一个小的晶体原子核可能被锁定成一个方向, 同时继续生长到适当的大小, 而不调整相对于表面的法线。事实上, 表面介导的晶体成核一直是一个讨厌的 crystallographers 试图在表面上循环连接的晶体, 而不损害晶体的过程中。在这里, 我们可以直接利用这种晶体的衍射数据收集。但是, 由于 thioredoxin 显示了对 xy、xz 和 yz 平面中某些方向的强烈偏爱 (图 7C), 因此存在系统特定的限制。实例表明, 定位分布不仅依赖于生长环境, 还取决于晶体形状。thioredoxin 晶体有拉长的形状, 倾向于在首选方向上生长, 而四方双锥构型奇异果甜蛋白晶体或正交葡萄糖异构酶晶体不显示这种行为。然而, 在所有情况下, 即使以优选的取向水晶自转的容易接近的范围导致充分地好覆盖面相互空间和因而完整数据集为所有被调查的蛋白质。因此, 在选择用于 x 射线照射的晶体时, 不需要采取额外的措施。
图 1: 微流控 X 射线芯片的制作方案.(1) SU-8 被分散在硅基板上, 并涂覆以获得所需的层厚度。(2) 光刻胶通过面罩暴露在紫外线照射下。(3) PGMEA 和异丙醇连续洗涤后, 未曝光的光刻胶被开发出来, 导致 (4) SU-8 大师进一步铸造步骤。(5) 将其倒在上面, (6) 固化后, 将其从 SU-8 中剥离。(7a) 环氧树脂胶在该塑料模具上, (7b) 活性聚酰亚胺箔与环氧树脂化学粘合。(8) 固化后, 采用带花纹的薄环氧膜的聚酰亚胺箔从该注塑模中剥离。(9) 在最后一步, 该装置是盖与第二聚酰亚胺箔, 以产生封闭的低 X 射线背景微流控芯片。请单击此处查看此图的较大版本.
图 2: 照片 (左) 和显微图像的横截面的最终筹码。在两个独立的芯片上显示一个典型的通道段 (中间) 和结晶井 (右)。箭头指示测量的距离。所有维度都在µm 中.请单击此处查看此图的较大版本.
图 3: 用 [A] 并行或 [B] 串行布局 (从顶部和侧面查看) 与µm 中指示的尺寸的结晶井设计示意图.典型的渠道高度是:50 µm 旁路, 50-60 µm 结晶井, 5-10 µm 毛细管阀门, 对应于大约 2.5 nl (平行的布局) 和 8 nl (串行布局) 的井容量。用食品染料显示了典型的井载行为。该芯片在 FC-43 中注入了 12 wt% 1 h、1 h、2 h、2 h-氟-1-辛醇, 然后将食品染料注射到储水井中。白色箭头指示流的方向。概述了加载的设备的图像显示所有油井加载无缺陷, 说明可靠的样品加载。平行布局以三高度设计为例, 结晶井比旁路高, 而串行布置则被描述为具有相同高度的井和旁路的双高设计。在加载过程中, 典型流速约为150µL/小时, 但在三的高度设计中观察到1毫升/小时的无缺陷载荷。请单击此处查看此图的较大版本.
图 4:原位随着时间的推移, 结晶良好的动态光散射.[A] 结晶良好的显微图像系列。随着时间的推移, 随着水蒸气的蒸发, 储液滴连续收缩。第一奇异果甜蛋白纳米微晶可以观察4小时后, [B] 相应的水动力半径分布的奇异果甜蛋白粒子测量的 dl 在同一结晶过程中拍摄的 [A]。第二半径分数的形成, 表明初始成核事件可以看到后约 1-2 h. [C] 代表体积减少两个参考水滴体积由于蒸发水损失随着时间的推移。请单击此处查看此图的较大版本.
图 5:原位衍射数据收集.[a] 单独的微流控芯片由3D 打印适配器 (蓝色) 安装在板量角器上。[B] 微流控芯片中的奇异果甜蛋白晶体在 X 射线照射期间, 在光束线 P14 的在线显微镜下成像。[C] 奇异果甜蛋白晶体的衍射记录为2.0 Å的分辨率, 微乎其微低的背景。请单击此处查看此图的较大版本.
图 6: 在室温下记录的微流控芯片中奇异果甜蛋白晶体的衍射数据的数据评估。[A] 精确奇异果甜蛋白模型的电子密度仅使用框架1-2 数据集 (蓝色等高线在1.5 σ)。[B] 奇异果甜蛋白晶体的强度衰减作为 x 射线剂量的函数。[C] Rmeas 值在 X 射线剂量上的进化。箱子情节在 [B] 和 [C] 与分位数 (上部价值 75%, 中值 50%, 更低的价值25% 和平均) 和胡须以95% 置信区间代表衍射强度的朽烂和 Rmeas 所有暴露的水晶 (n = 83)。请单击此处查看此图的较大版本.
图 7: 与实验室坐标系有关的微流控芯片箔中单位单元格方向的分布.[A] 双锥构型奇异果甜蛋白晶体在 xy (蓝色)、xz 平面 (绿色) 和 yz (红色) 平面上显示了广泛分布的方向覆盖近180°。[B] 葡萄糖异构酶也表现出广泛的分布, 而 [C] thioredoxin 显示了对某些方向的强烈偏爱。请单击此处查看此图的较大版本.
SU8-Layer | 自旋外套 | 预焙 | 暴露 | 后烘烤 |
[65/95 °c] | [65/95 °c] | |||
1st层: 水井 | 1000转每分钟 | 0/10 分钟 | 200兆焦耳/厘米2 | 1/4 分钟 |
15µm SU8-3010 | ||||
2nd层: 旁路 | 2000转每分钟 | 0/16 分钟 | 220兆焦耳/厘米2 | 1/5 分钟 |
35µm SU8-3025 | ||||
3rd层: 阀门 | 3000转每分钟 | 0/3 分钟 | 150兆焦耳/厘米2 | 1/2 分钟 |
5µm SU8-3005 |
表 1: 用于三层并行 X 射线芯片设计的 SU8 过程示例.这个层序将允许铸造一个为 X 射线芯片制造的一模。要在原型制作过程中直接模具, 请在主制造过程中反转层序, 从 3rd开始, 改为以 1st层结束。
蛋白 | 蛋白质浓度 | 蛋白质缓冲液 | 沉淀 | 空间组、PDB 项 | 消光系数 [M-1 cm-1] |
奇异果甜蛋白(Thaumatococcus daniellii) | 40毫克 mL-1 | 50毫米双三, pH 6。5 | 1.1 米酒石酸钠, 50 毫米三, pH 6。8 | I4222, 1LR2 | 29420 |
葡萄糖异构酶 (rubiginosus 链霉菌) | 25毫克 mL-1 | 10毫米 HEPES, 1 毫米氯化镁2, pH 值7。0 | 100毫米双三, 2.7 米硫酸铵, pH 5。7 | I222, 4ZB2 | 46410 |
Thioredoxin (Wuchereria bancrofti) | 34毫克 mL-1 | 20毫米三盐酸, 5 毫米 EDTA, 150 毫米氯化钠, pH 值8。0 | 27.5% PEG1500, 100 毫米, 6。3 | P41212, 4FYU | 24075 |
表 2: 制备的蛋白质晶体的结晶条件和空间组, 包括消光系数和 pdb 代码。
蛋白 | 暴露晶体数 | 每个晶体的衍射图案数 | 每曝光振荡范围 [°] | 曝光时间 [毫秒] | MR 的 PDB 条目 |
奇异果甜蛋白(Thaumatococcus daniellii) | 103 | 10 | 1 | 40 | 1LR2 |
葡萄糖异构酶 (rubiginosus 链霉菌) | 69 | 100 | 0。1 | 80 | 4ZB2 |
Thioredoxin (Wuchereria bancrofti) | 68 | 10 | 1 | 40 | 4FYU |
表 3: x 射线衍射数据采集参数。
数据收集统计信息a | 奇异果甜蛋白 (框架 1-20) | 葡萄糖异构酶 (框架 1-100) | thioredoxin (框架 1-10) |
光束线 | P14 | ||
波长 [Å] | 0.96863 | ||
航天集团 | P41212 | I222 | P42212 |
单位单元格参数: a = b, c [Å] | 58.62, 151.48 | 93.91, 99.60, 103.04 | 58.45, 151.59 |
晶体数 | 101 | 41 | 34 |
总振荡 [°] | 10 | 10 | 10 |
决议 [Å] | 30.1. 1989 (1.95 至 1.89) | 30.1. 1975 (1.80 至 1.75) | 30.3. 2000 (3.20 至 3.00) |
温度 [K] | 296 | 296 | 296 |
R p.i.m.b | 7.5 (25.5) | 8.8 (28.0) | 9.1 (33.2) |
测量的反射 | 1553200 | 690000 | 1111196 |
独特的反射 | 21850 | 48942 | 44449 |
平均 i/σ (一) | 6.07 (1.78) | 5.85 (1.66) | 4.08 (1.47) |
锰 (I) 半集相关 CC(1/2) | 96.2 (72.2) | 95.8 (68.2) | 97.9 (75.3) |
完整性 [%] | 99.8 (100.0) | 100.0 (99.9) | 99.9 (100.0) |
冗余 | 71。1 | 14。1 | 25 |
细化统计信息 | |||
分辨率范围 [Å] | 1/30/1989 | 1/30/1975 | 3/30/2000 |
r/R释放[%] | 18.8/23。9 | 18.1/20。5 | 18.9/23。1 |
蛋白质原子 | 1550 | 3045 | 1129 |
水分子 | 51 | 111 | 164 |
配体分子 | 20 | 0 | 0 |
Rms 偏差 | |||
粘结长度 [Å] | 0.02 | 0.026 | 0.01 |
键角 [°] | 2.04 | 2.22 | 1.43 |
B 因子 [Å2] | |||
蛋白 | 22。6 | 20 | 50 |
水 | 25。1 | 27。1 | 29。7 |
配 | 20。4 | ||
拉玛钱德朗图分析 | |||
最受青睐的地区 [%] | 97.67 | 95.32 | 96.13 |
允许的区域 [%] | 2.44 | 4.16 | 3.64 |
慷慨允许的区域 [%] | 0.49 | 0.52 | 0.23 |
a: 括号中的值用于最高分辨率 shell。 | |||
b: (), 其中 I (hkl) 是反射的平均强度 hkl, Σhkl 是总和在所有反射和Σi 是对反射 hkl 的 I 测量的总和.![]() |
表 4: 奇异果甜蛋白、葡萄糖异构酶和 thioredoxin 的数据收集统计资料。
Supplementry 文件 1: chip_geometry. dwg使用的芯片几何图形的 CAD 文件。请单击此处下载此文件.
Supplementry 文件 2: goniometer_adapter. stlSTL 文件, 指定 X 射线芯片量角器适配器。请单击此处下载此文件.
Supplementry 文件 3: xds.用于创建输入文件的 Bash 脚本, 用于通过 XDS 处理衍射数据的楔形。请单击此处下载此文件.
Supplementry 文件 4: 嵌入式.Bash 脚本将衍射数据从子集合并并创建一个 HKL 文件。请单击此处下载此文件.
Supplementry 文件 5: ISigma.Bash 脚本从所有单个子集中提取 ISigma 值。请单击此处下载此文件.
Supplementry 文件 6: Rmeas.Bash 脚本从所有单个子集中提取 Rmeas 值。请单击此处下载此文件.
Supplementry 文件 7: rotation_matrix.Bash 脚本为 Matlab 准备输入文件, 计算从旋转矩阵的欧拉角。请单击此处下载此文件.
以环氧树脂为填充材料, 聚酰亚胺箔为窗口材料, 制备了用于原位X 射线衍射的微流控器件。我们的程序通过以前的 X 射线芯片设计16,21, 优化了制造过程的各个步骤。我们减少了窗口的厚度, 从而使背景散射, 同时也放宽制造, 因为需要更少的工艺步骤。使用描述的协议进行原位结晶具有很大的好处。它允许在室温下进行衍射数据收集, 从而排除了低温保护的需要, 在某些情况下, 它包含了在蛋白质结构中引入人工制品的风险。此外, 晶体不受物理应力的作用, 因为可以避免晶体从其原生态环境中转移。通过这个过程, 晶体保持其最高的质量, 不遭受任何治疗。
根据我们的经验, 协议中最关键的步骤围绕着控制结晶过程。获得合适尺寸的 X 射线合适晶体的参数需要进行经验主义的鉴定, 不能直接从蒸气扩散实验中提取。使用相同浓度的蛋白质和沉淀并不总是导致晶体在不同的芯片, 或有时在不同的油井内相同的芯片。这表明, 所有影响晶体成核和生长的因素都应仔细考虑, 如母液成分或结晶动力学 (通过蒸发轨迹)。当更大的水晶衍射对更高的决议, 适当地大水晶是理想地增长。晶体成核和生长过程可以跟随 dl 测量。调整激光对焦内的50µm 薄结晶室的芯片可能是一个挑战, 可能需要仔细手动对准。采用深度大于100µm 的井眼, 激光自动对准是可行的、可靠的, 可以通过自动采集方案对多井进行监测。
基于聚酰亚胺的 x 射线芯片只产生低背景, 我们通过求解三模型蛋白结构, 证明了这些器件对常规 X 射线衍射数据的适用性。与以前实现的分辨率相比, 在芯片中获得的最佳分辨力与以往的分辨率不同, 从显着较大的蛋白质晶体和常规的 X 射线数据收集。这可能是由于几个因素, 进一步的结晶条件优化可能进一步提高衍射。可以将原位衍射数据收集到1.8 Å分辨率, 应用晶体尺寸小于30µm。对奇异果甜蛋白衍射数据的详细分析提供了对辐射损伤的见解。为了限制辐射损伤的扩展, 微流控装置中每个隔间只有一个单晶, 因为自由基的扩散会发生在相邻的晶体中。为了提高数据收集的速度, 将来应该自动化。
由于晶体形态, 在某些情况下, 可能会出现首选方向。这是例如案件与 thioredoxin 数据集, 水晶有一个强烈优选的取向相对于芯片窗口。即使在这里, 我们也可以收集一个完整的衍射数据集。如果晶体在芯片中表现出一个首选的方向, 特别是如果相应的空间群也有一个低对称性, 那么数据集的完整性应该在收集过程中被监视, 这样足够的衍射模式收集。
使用这些芯片的时间分辨研究是直接可能的, 当利用光诱导反应与泵探针方法。为泵浦激光器的聚酰亚胺箔光传输需要阐明, 或者, 可以使用光学上清楚的聚酰亚胺或环烯烃。目前的微流控几何不允许在晶体生长后的基质混合实验。然而, 我们期望所描述的 x 射线芯片制造协议也适用于这种混合设计的时间分辨 X 射线衍射以及散射方法19。
作者没有什么可透露的。
这项工作得到了码头种子基金 PIF-2015-46、BMBF 赠款05K16GUA 和05K12GU3 的支持, 以及 "汉堡超快成像中心--德意志原子能规模卓越集群中的物质结构、动力学和控制"。Forschungsgemeinschaft (DFG)。与自由电子激光科学中心相关的作者的工作由亥姆霍兹协会通过方案导向基金提供资金。同步辐射 MX 数据是收集在光束线 P14 经营的 EMBL 汉堡在佩特拉 III 储存环 (DESY, 汉堡, 德国)。
Name | Company | Catalog Number | Comments |
SU-8 3000 Series | MicroChem Corp. | SU-8 3000 | Photoresist |
PGMEA | Sigma-Aldrich | 484431 | Developer |
Isopropyl alcohol | Solvent | ||
Ethanol | Solvent | ||
Epoxy glue | UHU | Plus Schnellfest 5 min | Epoxy glue |
PDMS | Dow Corning | Sylgard 184 | Silicone |
Kapton foil | Dupont/ American Durafilm | HN grade, gauge 30 (7.5 μm) | polyimide foil |
APTS | Sigma-Aldrich | 440140 | Chemical |
GPTS | Sigma-Aldrich | 440167 | Chemical |
Cytop CTX-109AE | Asahi Glass Co. Ltd | Cytop CTX-109AE | Cytop fluoropolymer coating |
CT-Solv 100E | Asahi Glass Co. Ltd | CT-Solv 100E | Cytop fluoro-solvent |
HFE-7500 | 3M | Novec 7500 | Fluorinated oil |
AutoCAD | AutoDesk Inc. | AutoCAD | CAD Software |
Biopsy Punch | Harris | Uni-core 0.75 mm | |
Photo mask | JD Photo Data | ||
3 inch wafer | University Wafer | Silicon wafer | |
Mask aligner | SÜSS MicroTec | MJB4 | Mask aligner |
PDMS mixer | Thinky | ARE-250 | |
Plasma machine | Diener electronic | Zepto | |
Thaumatin | Sigma Aldrich | T7638 | Protein |
Glucose Isomerase | Hamton Research | HR7-102 | Protein |
Bis-Tris | Sigma Aldrich | B9754 | Chemical |
Sodium Tartrate | Merck | 106664 | Chemical |
Tris-HCl | Sigma Aldrich | 10812846001 | Chemical |
HEPES | Carl Roth | 6763.2 | Chemical |
Magnesium Chloride | Sigma Aldrich | 208337 | Chemical |
Ammonium Sulfate | Sigma Aldrich | A4418 | Chemical |
EDTA | Sigma Aldrich | E6758 | Chemical |
Sodium Chloride | Sigma Aldrich | 1064060250 | Chemical |
PEG1500 | Molecular Dimensions | MD2-100-6 | Chemical |
SPG buffer | Jena Bioscience | CSS-389 | Chemical |
SpectroLight600 | XtalConcepts | DLS Instrument | |
Nanodrop | Thermo Scientific | Spectrophotometer | |
Zentrifuge | Eppendorf | ||
Ultimaker2 | Ultimaker | 3D printer | |
Form2 | Formlabs | 3D printer | |
Amicon Filter | Sartorius Stedim | 0.2 µm filter | |
Tubing | Adtech Polymer Engineering Ltd | Bioblock/05 | PTFE tubing 0.3 mm Inner Diameter x 0.76 mm Outer Diameter |
Syringes | BD | 309628 | 1ml Luer-Lock Tip |
Needle | Terumo Agani Needle | AN*2716R1 | 27Gx5/8" |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。