Method Article
Here, we describe a method of long-term time-lapse microscopy to longitudinally track single cells in response to anti-cancer therapeutics.
单细胞对抗癌药物的响应中确定人口响应显著贡献,并因此是在整体结果的主要因素。免疫印迹,流式细胞术和固定细胞实验经常用于研究细胞的抗癌药物的反应。这些方法是重要的,但是它们具有若干缺点。变异药物反应癌细胞与正常细胞之间的,和瞬态响应罕见的癌症不同来源的细胞,之间是很难理解用人口平均测定,不能够直接跟踪和纵向分析它们。显微镜特别适合于图像的活细胞。技术的进步使我们能够在一个分辨率不仅能细胞跟踪,而且多种细胞反应观察常规图像的细胞。我们详细描述了一种方法,允许的连续时间推移成像为基本上只要需要,典型地高达96小时的药物的反应过程中的细胞。使用该方法的变型中,细胞可以为周进行监测。随着就业的基因编码荧光生物传感器大量的进程,途径和应答可以遵循。我们表明的例子,其中包括跟踪和细胞生长和细胞周期进程,染色体动力学,DNA损伤的定量,和细胞死亡。我们还讨论技术和灵活性的变化,并突出显示一些常见的陷阱。
活细胞显微镜和单细胞的纵向跟踪不是一个新的技术。从最早的显微镜,爱好者和科学家们观察和研究单个细胞和生物体,他们的行为和发展1-3。从已故的大卫·罗杰斯在20世纪50年代范德比尔特大学一个著名的例子显示了血涂片追金黄色葡萄球菌和吞噬4的最终过程中的人中性粒细胞。此活细胞电影是如何多个进程可以观察和相关的单次实验优异的例证:化学梯度,力学和细胞运动的速度的感测,细胞形状动力学,粘附和病原体的吞噬作用。
全自动显微镜和高度敏感的数码相机的出现,导致了使用显微镜调查的越来越多问细胞生物学范围˚F基本问题ROM细胞如何移动和5,6分7,8细胞器的动态和膜贩运9-11。无荧光,明场显微镜,包括相位对比(PC),它囊括了诺贝尔奖为弗里茨·泽尔尼克于1953年,和微分干涉对比(DIC)允许细胞和细胞核,而且亚细胞结构,包括微管束的观察,染色体,核仁,细胞器动力学和粗纤维肌动蛋白12。基因编码荧光蛋白和细胞器对荧光染料的发展已经大大影响时间推移显微镜13-15。尽管本文的不关注的焦点,在细胞球体和在使用共聚焦和多光子显微镜原位 (活体显微镜)成像代表了该方法的另一个扩张,并有使用和讨论这些方法16-19优秀物品。
细胞的抗CANC响应呃药物或天然产物的分子和细胞比例来确定。理解细胞应答和命运以下治疗常常涉及人口平均测定( 例如 ,免疫印迹,全井措施),或与免疫荧光检测固定时间点和流式细胞仪,用来测量单细胞。异质性群体内单个细胞应答的药物,特别是在肿瘤中,可以解释一些变异的响应跨越了与在饱和相同药物处理的细胞系和肿瘤中看到。长期纵向方法遵循给定的单细胞或细胞群是不常见的,但非常强大的方法,其允许分子响应途 径的直接研究,不同表型( 例如 ,细胞死亡或细胞分裂),观察细胞至细胞变异的群体内,以及如何将这些因素有助于人口响应动力学20-22。乐观,能够观察和量化的单细胞反应将有助于改善我们的药是如何工作的,为什么他们有时会失败,以及如何最好地使用他们的理解。
长期时间推移显微镜,纵向跟踪,以及药物反应分析的技术可用于许多研究者,并且可以是简单的,只用透射光观察的表型反应20,21。该方法的主要组成部分包括:感兴趣的细胞的适当的制剂,用环境室的自动显微镜,照相机与计算机集成的获取和存储图像,以及软件审查时间推移和测量和分析细胞和任何荧光生物传感器。我们提供了一个详细的协议,它为使用明和/或广角镜啶进行培养细胞的时间推移显微镜,只要几天许多技巧。该协议可以用于任何细胞系,可以在培养物中生长研究其抗癌治疗的反应。我们提供获得的数据的实施例和使用多个不同的基因编码的荧光生物传感器和相衬显微镜的一例,简要地讨论的不同类型的探针,优点和长期的时间推移和纵向跟踪的缺点进行了分析,什么都可以了解到这种方法,很难从非直接方法,以及一些变化,我们希望将有兴趣和价值经验的研究人员使用的方法谁没有考虑到理解,以及经验丰富的研究。
以下方案使用由实验在图4 和6关于采集设置和实验条件定义的参数。许多这些参数可以被修改以适应其它实验( 即,曝光时间,分级,荧光通道等 )。所有的程序必须坚持体制准则和条例,并通过生物安全委员会的批准。显微镜制造商的网站含有活细胞成像优秀的信息。
1.显微镜和图像处理软件
2.蜂窝可视化流程和表型响应
3.样品的制备
4.环境商会建立
5.显微镜建立
6.运送到细胞显微镜和成商会
7.设置成像
8.结束时间推移
9.纵向跟踪和分析时间推移数据
长期时间推移显微镜和直接纵向跟踪允许许多抗癌作用药物的反应在研究。以下图1中的大致轮廓,示出细胞的多个例子表达验证荧光记者,具有抗癌药物,追踪处理,并使用不同的方法进行分析。
单独相衬显微镜是非常翔实和有力的间期与有丝分裂,有丝分裂期和停滞,不正常的细胞分裂和细胞死亡21,23,24报道。靶向细胞分裂的药物,通常被称为抗有丝分裂药物,继续得到发展。 图2和影1和2示出的一对仅在其p53状态上不同的匹配乳腺癌由来的MCF7细胞系的例子,用500处理一类型的抗癌药该目标的纳米并抑制有丝分裂马达蛋白,驱动蛋白5(KSP1,KIF11,Eg5的),导致长期的有丝分裂20。野生型MCF7细胞( 图2A)是一个范例,研究p53依赖的细胞周期停滞25-27。野生型细胞进入有丝分裂,保持了几个小时,最终会离开,并与p53基因诱导25逮捕大部分。当p53基因是由稳定的p53击倒(MCF7 sh的p53基因)中除去,代替它们离开有丝分裂后阻止,所述细胞经过重复循环( 图2B)。细胞手动跟踪和该输入的第二有丝分裂的有丝分裂指数和细胞的百分比进行评分( 图2C,D)。我们注意到,SH P53细胞分裂跟踪当它进入第二轮有丝分裂,而比逮捕和有丝分裂留下没有分裂。虽然这里未示出的有丝分裂事件的持续时间,连续的有丝分裂,细胞分裂的百分比,以及相关的细胞死亡的事件之间的时间也可以为s芯20,21。
的紫杉烷类,例如紫杉醇和多西他赛,对于许多癌症,包括那些难以治疗像胰腺癌和晚期乳腺癌常见化疗。紫杉醇结合微管的动态加端并稳定它们,防止它们的正常功能。紫杉醇注意到剂量依赖性的效果,并且即使在低浓度时可扰乱正常的有丝分裂进展和染色体分离16。染色体的忠实偏析是正常细胞增殖和当异常可导致非整倍体可能触发细胞周期停滞,而且还充当癌症进展的驾驶员是必不可少的。 图3和电影3显示宫颈癌衍生HeLa细胞稳定表达质标记组蛋白2B融合到mCherry和在正常生长培养基融合到EGFP(未示出)的β-微管蛋白与1nM紫杉醇治疗。在这例如,进入和进展有丝分裂可以遵循。有丝分裂的时间在这个单元格显示正常,但染色体排列和分离不,导致核凸起和微核是表明染色体分离差结构。微核容易发生DNA损伤和chromothripsis,这是染色体或染色质的大规模碎片-这在肿瘤演进28,29重要的影响。虽然这里未示出,微核与相对于其它有丝分裂的结构和这些细胞的命运的起源可直接使用长期时间推移跟踪。另外,染色质标记物表达用DNA损伤记者可以用来建立染色体分离,微核和DNA损伤的关系。
荧光记者允许进行跟踪枚举电池工艺和新记者不断被开发出来。对于前充足,细胞周期由作为在显影靶向抗癌疗法特别感兴趣的阶段; 图4和电影4示出了纤维肉瘤来源的细胞株(HT1080),该稳定地共表达两位记者称为荧光泛素细胞周期指标(FUCCI)30。在这里的系统中,CDT1多肽的一部分融合至mKO2(单体Kusabira橙2),并增加在G1期和早期S期下降,且geminin的一部分被熔合到MAG(单体Azami绿色)和中旬S相和增加是在后期降解。这种细胞是在正常生长培养基中,并通过细胞周期中15小时。 图5A,B和电影5示出在正常培养基中10μM的PD0332991,一个Cdk4 /细胞6抑制剂处理的相同的细胞的进展。将细胞通过G2期进展和正常分裂,并在随后的G1期强烈逮捕,指示用于效果的潜力香港专业教育学院在生长的肿瘤细胞生长抑制的效果。 图5C,D和电影6显示了一个小分子叫selinexor(KPT-330),强效抑制剂核出口蛋白处理的正常媒介相同的细胞,exportin-1(XPO1,又名CRM1 )。这些化合物被称为选择性抑制剂核出口(SINE)及其抗癌作用的目前正在调查31,32。 SINE治疗结果强有力的细胞周期表型和细胞死亡33,34。此实施例表明,通过G1期与正常动力学(约6小时)的进展的细胞,但作为由周期与SINE红色和绿色信号(约3小时的控制,但10处理指示经历S期进展延迟)。这种细胞死亡下旬S-或G2期后的21小时30分钟;一个正常的细胞周期是大约15小时。正在研究对不同血液和实体瘤35 selinexor的效果。
抗肿瘤治疗的主要方法是通过细胞毒性灾难性的DNA损伤。例如,那些靶向拓扑异构酶I和/或II - DNA损伤可以通过许多疗法包括放射,基于铂的加合物,和小分子药物来诱导。许多组合疗法也被诱导或者通过不同途径损害或阻断细胞修复损伤的能力攻击DNA损伤轴。动力学和损坏的水平和是否以及如何这导致细胞死亡是在发育治疗广泛的重要性。 图6和电影7示HT1080细胞,在正常生长稳定表达双链DNA损伤记者,mCherry-BP1-2 36介质与10μM的依托泊苷(VP-16),拓扑异构酶II毒物处理。记者包括DNA双链断裂现场蛋白质的一部分,即稠合到mCherry 53BP1的。这种细胞的细胞核跟踪USI纳克ImageJ的和集成的mCherry-BP1-2信号分析粒子插件在每一帧阈值指出,消除可溶性核探测值后测量。 DNA损伤是最小的,第10小时,然后稳步增加。拓扑异构酶II抑制剂是已知的特别影响S-和G2期,当酶是最活跃的37,38。在本实施例可以表明细胞周期相关损伤中观察到的动力学; mCherry-BP1-2与FUCCI记者组合可以证明,然后可以连接到细胞命运的损害的定时。
图1.概述长期使用时间推移显微镜和纵向跟踪研究抗癌药物的反应。在根据需要适当标记活细胞成像菜细胞成像,细胞或感兴趣区域进行跟踪,并且数据分析。许多方法可用来跟踪和量化细胞中,有些是在这里显示。 请点击此处查看该图的放大版本。
图2.相衬时间推移显微镜显示抗有丝分裂药物治疗。野生型(A)和p53基因敲除(B)的MCF7细胞与500nM的驱动蛋白5抑制剂处理和成像的每10分钟为96 后的p53依赖性小时用相差显微镜用20X PH2 0.70的NA的透镜。个别的细胞手动跟踪和百分比有丝分裂,并且如果小区中的时间推移期间再次前进到另一个有丝分裂进行评分。箭头表示被跟踪单元。用sh p53的电池单体(B)除以在进入第二个有丝分裂。 (C)两种细胞系翔W¯¯长期有丝分裂逮捕高峰%的有丝分裂(第一蓝色和红色箭头)所示。 (C,D),近90%的细胞无p53基因(SH P53,N = 87)相比,野生型的20%(N = 130),显示继续进展(红色箭头)。误差线表示标准偏差。酒吧= 20微米。 电影1和2。 请点击此处查看该图的放大版本。
图3.染色质标记组蛋白2B后低剂量紫杉醇治疗。紫杉醇是一种微管靶向药物,其导致在细胞生长和分裂复杂,依赖于浓度的缺陷显露染色体分离异常的证据 。染色质的组织在不同的细胞状态通知,包括舞台的有丝分裂和细胞死亡。 HeLa细胞稳定表达既H2B-mCherry和β微管蛋白-EGFP用1nM的紫杉醇处理。这种细胞是最初相间,通过有丝分裂和分歧的阶段进展。而在有丝分裂时显示正常,存在被解决(箭头)染色体附着和分离错误的证据。这些细胞的命运可直接由纵向跟踪来确定。相衬(未示出)和荧光图像以每10分钟1帧用20X Ph2一起0.70 NA透镜获得的。酒吧= 10微米。 电影3。 请点击此处查看该图的放大版本。
图4.荧光细胞周期标记允许细胞周期进程直接监控。(A) 通过表达相衬和荧光成像的FUCCI系统现场HT1080纤维肉瘤细胞的领域。 (B,C)在A组中虚线框的有丝分裂细胞之后。通过细胞周期中大约15小时,通常进步。有丝分裂后,细胞是简要暗淡,然后成为红,因为他们的进展进入并通过G1期。当细胞进入S期,红色CDT1探针降解和绿色geminin探针增加。简要约3小时的时间内,其中两个探头都存在,表明早期的S-阶段。作为细胞透过S-和G2期和到下一个有丝分裂进展它们保持绿色。绿色探头在细胞分裂后期的降解。相衬和荧光图像,每10分钟1边框采用了20X PH2 NA 0.70镜头收购。酒吧= 10微米。 电影4。 请点击此处为viEW这个数字的放大版本。
图5.细胞周期特异性作用和相关的细胞死亡,同样的细胞系如在图4,但与表示不同的抗癌靶两种不同分子处理。治疗后时间指示。 (A,B)的治疗晚期的S / G2期细胞与10μM的PD0332991的Cdk4 / 6抑制剂后,细胞通常进行到有丝分裂(M)和分裂。一个子单元是通过在细胞核中感兴趣的区域测量的红色和绿色荧光强度跟踪。细胞在G1期保持逮捕大约40小时。 (C,D)的治疗用1μMselinexor后期G2期细胞后,将其细胞通常进行到有丝分裂(M)和分裂。一个子单元被跟踪,并进入G1期,通过前进一个持久早S期(红色和绿色信号),转换到仅绿色和后21小时30分钟死亡。这些数据表明S相进展受selinexor治疗的影响。相衬和荧光图像,每10分钟1边框采用了20X PH2 NA 0.70镜头收购。酒吧= 10微米。 电影5和6。 请点击此处查看该图的放大版本。
图6.药物治疗。许多抗癌治疗后DNA损伤的动态导致DNA损伤,可以深远影响细胞的反应和治疗成功。 HT1080细胞稳定表达两个双链DNA损伤标记mCherry-BP1-2和H2B-EGFP(未示出)分别与拓扑异构酶II药物依托泊苷和DNA序列为10μM处理豪悦国际被跟踪。 (A)的数量和依托泊苷后灶增加强度。有最初一滞,指示与依托泊苷的已知的机制可能是一致的细胞周期的影响。 22小时50分钟该细胞中积累的高水平的伤害。虽然这里未示出,该细胞的命运可以通过直接跟踪来确定。 (B)中对应于通过H2B-EGFP信号得到的核的ROI使用ImageJ的粒子追踪被跟踪和集成BP1-2 mCherry信号进行量化和对时间作图。在信号中的滞后,直到大约10小时时所指出的,随后是持续增加。荧光图像,每10分钟1边框采用了40X PH2 NA 0.75镜头收购。酒吧= 10微米。 电影7。 请点击此处查看该图的放大版本。
抗有丝分裂的药物治疗。野生型MCF7细胞后野生型MCF7细胞的电影1相衬时间推移显微镜用500nM的驱动蛋白5抑制剂处理并用相衬显微镜用20X PH2成像每10分钟为96小时0.70 NA镜头。长期有丝分裂逮捕和退出有丝分裂可以观察到, 如图2所示。 请点击此处下载此文件。
电影2相衬抗有丝分裂药物治疗。MCF7细胞稳定表达的小发夹RNA靶向降解P53 P53后,敲除MCF7细胞随着时间推移显微镜用500nM的驱动蛋白5抑制剂治疗,成像每10分钟用相差显微术以20X PH2 0.70 NA透镜96小时。长期有丝分裂逮捕和多轮的有丝分裂,可以观察到, 如图2所示。 请点击此处下载此文件。
低剂量紫杉醇治疗。HeLa细胞稳定表达H2B - mCherry和β微管蛋白-EGFP 后HeLa细胞的电影3.荧光时间推移显微镜用1纳米紫杉醇治疗。染色体附着和隔离问题,可以观察到, 如图3所示。图像被收购每10分钟有20X PH2 NA 0.70镜头。 请点击此处下载此文件。
影视5"SRC ="/文件/ ftp_upload / 53994 / 53994movie5.jpg"/>
电影5. HT1080细胞中表达治疗后荧光细胞周期标记与G1期抑制剂。表达FUCCI系统HT1080细胞用10μM的PD0332991,一个Cdk4 /细胞6抑制剂治疗。被跟踪的细胞通常发展到有丝分裂和分歧。一个女儿是跟踪,并在G1一直红色为电影的持续时间。量化是如图5所示。图像被收购每10分钟有20X PH2 NA 0.70镜头。 请点击此处下载此文件。
电影6. HT1080细胞中表达荧光细胞周期标记与Exportin-1抑制剂,Selinexor,表达FUCCI系统HT1080细胞治疗后治疗ED与1μMselinexor。这晚G2期细胞通过有丝分裂跟踪。然后,子细胞通过G1期(红色)前进,并进入S期(黄色)。细胞通过S-相慢慢前进直到它进入后期S / G2期和后21小时治疗的30分钟死亡。量化是如图5所示。图像被收购每10分钟有20X PH2 NA 0.70镜头。 请点击此处下载此文件。
治疗后电影7. DNA损伤动力学与拓扑异构酶II抑制剂。HT1080细胞稳定表达的双链DNA损伤标记mCherry-BP1-2和H2B-EGFP用10μM的依托泊苷,拓扑异构酶II抑制剂处理。该mCherry-BP1-2显示在电影中。随着继续治疗秒,mCherry-BP1-2增大信号,指示增加的双链DNA损伤。量化是如图6所示。图像被收购每10分钟有40X PH2 NA 0.75镜头。 请点击此处下载此文件。
时间推移显微镜和纵向跟踪的优势
该显微镜是用于药物反应的纵向研究的理想工具,因为它允许调查者跟踪单个细胞和他们的命运以及整个人口。变异的细胞群内的药物反应是用于抗癌治疗设计的一个主要问题。单个细胞的纵向跟踪调查可以观察到这种变化,并开始了解的底层机制和后果,因为它涉及到细胞群。利用各种荧光探针提供的方法来观察和了解双方共同的和罕见的反应表现型,众说纷纭。人口响应的时间和不同的细胞命运的贡献,在治疗后的细胞系或国家之间的响应特定表型和命运,和差异之间的关系是可以学到什么例子。许多癌症相关的过程进行研究。一些未在这篇文章中强调了包括与细胞凋亡,细胞自噬细胞死亡,坏死记者39-42,细胞侵袭43,44,以及决定细胞命运决定27 p53的动态。此外,这种方法不限定于研究在抗癌治疗的研究。相同的原理可以用于研究许多其它生物学过程,包括有丝分裂45细胞骨架动力学46,47和细胞内信号48。
时间推移荧光显微镜还可以提供蛋白质和感兴趣的分子定位和强度数据。不仅是在蛋白水平对药物反应的重大变化,但蛋白质的细胞内的正确(或不正确)的定位是为理解反应是至关重要的。时间推移显微镜提供蛋白质的地方是局部的数据( 例如 ,细胞核,细胞质,细胞器特异性,药物治疗以及如何定位和总的水平在单细胞和人口平随时间而改变之后等 )。
挑战和局限
尽管时间推移显微镜和单细胞纵向分析的优势,也有局限性。荧光记者通过其稳定性和特异性的限制。设计荧光融合蛋白时,关键是要选择的探针是光稳定的,明亮的,但它也有必要考虑在荧光标记的影响被连接到感兴趣的蛋白质的有关其正常功能和正确定位能力。这些问题已在别处详细讨论,并有已发布15,49,50许多可用的荧光标记的蛋白。其它荧光标记或标签可以被加入到细胞中,并必须小心,以确保它们没有毒性。根据我们的经验,这些P长袍,例如线粒体标签(膜电位)或细胞渗透性DNA染料,往往更容易漂白和将被摊薄出因细胞增殖。
此外,存在与生长和在显微镜观察细胞的许多技术挑战。不稳定的问候的温度,湿度,大气和光将具有对细胞大的影响,从而导致数据的丢失甚至在整个实验。关于图像捕获稳定性问题可以在电影1和2中可以看出,这种作用可以通过使用石蜡膜的最小化(参见4.2)。也有使用ImageJ(NIH)的可用于采集后处理图像稳定算法,例如。一个常常被忽视长期的时间推移的一个方面是数据管理和文件大小。分箱中的数据,即使当,单个时间推移实验通常是在过量的30千兆字节。高容量,高速,可靠的数据存储和传输都很强LY鼓励。取决于正被成像的荧光生物传感器(多个),它常常是不必要获取全分辨率图像,例如核或细胞质传感器。可能的情况下,我们建议,采取措施,保持文件较小的情况,从而导致更方便地使用数据,要求不高的计算需求,并改进工作流程工作。
光毒性主要关心的问题进行长期的时间推移显微镜时。高强度的光及长曝光可导致荧光探针,细胞应激和细胞死亡的漂白。这些效果可以对数据有很大的影响,并导致实验的不实陈述。相机分级和增益可以用来减少曝光时间。在光路中的中性密度滤波器减少样品上的光的强度。光的用于成像的波长也会影响细胞。较短波长(UV,近紫外光)造成的破坏更大细胞比更快的速度导致光漂白较长的波长( 例如 ,红色,远红)。目标的选择也可以影响成像条件。更高的数值孔径(NA)的透镜会产生更高分辨率的图像,但更高的放大倍率允许从导致更高的曝光时间或更强烈的光的样品透射更少的光。一个目标应该用适当的NA和放大,将解决你感兴趣的对象,而过采样进行选择。在许多情况下,最高的目标未必是最合适的选择。核探针( 图4,5),低倍率物镜允许被捕获较大场,有效地增加样本大小,而不损害所需的对象的分辨率。长期时间推移在三个方面应该特别小心,由于集成的曝光进行。使用旋转盘共聚焦显微镜,感光摄像头( 例如 ,EM-CCD),摄像头的增益,以及Z系列快速压电马达suggested可减少曝光。快速Z系列采集同样重要的是最小化在采集期间的发生是由于细胞运动和动态运动伪影。使用许多不同的设置未处理的细胞的经验分析可以在确定任何给定的细胞系或报告荧光光线的影响是有用的。另外,未处理的对照应包括在每个实验中,以确定的实验设置的细胞毒作用。
该技术的变化
长期延时是强大,非常灵活。使用共培养技术,不同的细胞系或表达不同的记者同一细胞系都可以使用。这方面的一个突出例子是成像吞噬细胞与那些垂死响应于抗癌药物的靶细胞。另一个例子可以是研究对邻近药物幼稚细胞应答细胞的影响。再加上照片禾teable,光转换,以及光切换的荧光蛋白质,而且可被光活化以触发特定的效果工程蛋白质( 例如 ,KillerRed的),有很多可能性。更可以使用复杂的方法是使用各种专门类型显微镜如漂白,荧光共振能量转移(FRET)后的荧光再分配,和超分辨率( 例如 ,随机光学重构显微术(STORM),结构照明显微镜(SIM)或受激发射损耗(STED)),以及许多其他和有优点和每种方法的局限性。
长期( 例如 ,数周,数月)的反应和细胞的药物取出后,在恢复是对于理解抗癌药物的作用。网格玻璃底菜是反复监测人口/区域内的特定细胞或区域的宝贵工具。例如,用一个网格皿中,初始博士微克响应可使用的时间推移进行成像,该药物可以被删除,并在网格特定的区域可以被成像在一段时间或进行额外的时间推移在所需的时间。在碗碟上的玻璃底可以通过用划线工具或者切割或通过使用商业试剂除去,并在玻璃上的细胞可以染色的其他感兴趣的标记物,例如衰老相关β-galactocidase活性,相比时延了解细胞如何达到该状态的历史。如果该细胞群体是足够大,也可以进行免疫印迹或流式细胞术。
厚的样品历来难的形象,在各种凝胶材料和基质例如球状体。新的方法包括荧光共焦或多光子显微镜16,18,19,51可用于该方法延伸到在细胞的抗癌疗法的响应方式原位理解。该本身的研究和科学家使用时间推移,研究抗癌药物的反应24,52-54清楚地表明我们对发展单细胞药效学的理解,这将有助于提高我们使用的抗癌药物的能力移动越来越多更有效和或许预测抗癌药物的反应。
The authors have no conflicts of interest to disclose.
We thank Joshua Marcus for technical support and Jolien Tyler, Ph.D., Director of the Richard J. McIntosh Light Microscopy Core Facility, for technical advice. This work was supported by funds from the University of Colorado Boulder and the University of Colorado Boulder Graduate School to J.D.O. R.T.B. is partially supported by pre-doctoral training grant from the NIH (T32 GM008759). We thank Karyopharm Therapeutics, Inc. for selinexor and Merck Serono for Kinesin-5 inhibitor. FUCCI plasmids are from Atsushi Miyawaki (RIKEN, Japan) via MTA. mCherry-BP1-2 was from Addgene. HeLa expressing H2b-mCherry and β-tubulin-EGFP are from Daniel Gerlich (IMBA, Austrian Academy of Sciences, Austria).
Name | Company | Catalog Number | Comments |
Taxol (paclitaxel) | Sigma | T7191 | microtubule stabilizing drug |
Etoposide | Selleckchem | S1225 | topoisomerase II inhibitor |
Selinexor | Karyopharm Therapeutics | na | XPO1/CRM1 inhibitor, gift |
Kinesin-5 inhibitor | Merck Serono | na | gift, also available from American Custom Chemicals Corporation. CAS 858668-07-2 |
Cell growth medium | HyClone (Fisher) or Mediatech | many companies available | |
5% CO2/balance air, certified | Airgas | Z03NI7222004379 | |
35 mm Dish, 20 mm glass bottom | Cellvis | D35-20-1.5-N | many companies available |
35 mm 4-well Dish, 20 mm glass bottom | Cellvis | D35C4-20-1.5-N | many companies available |
35 mm Dish, gridded glass bottom | MatTek | P35G-2-14-CGRD | many companies available |
Multi-well, glass bottom | Cellvis | P12-1.5H-N | many companies available |
Olympus IX81 inverted epifluorescence microscope | Olympus | ||
Olympus IX2-UCB controller | Olympus | ||
PRIOR LumenPro200 | Prior Scientific | Lumen200PRO | |
PRIOR Proscan III motorized stage | Prio Scientific | H117 | |
STEV chamber | InVivo Scientific | STEV.ECU.HC5 STAGE TOP | |
Environmental Controller Unit | InVivo Scientific | STEV.ECU.HC5 STAGE TOP | |
Hamamatsu ORCA R2 CCD with controller | Hamamatsu | C10600 | |
Nikon Eclipse Ti | Nikon | ||
Nikon laser launch | Nikon | ||
SOLA light engine | lumencor | ||
iXon Ultra 897 EM-CCD | ANDOR | ||
TOKAI HIT inclubation chamber | TOKAI HIT | TIZSH |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。