Source: Tamara M. Powers, Department of Chemistry, Texas A&M University
In 1951, Kealy and Pauson reported to Nature the synthesis of a new organometallic compound, ferrocene.1 In their original report, Pauson suggested a structure for ferrocene in which the iron is singly bonded (sigma bonds) to one carbon atom of each cyclopentadiene ligand (Figure 1, Structure I).1,2,3 This initial report led to wide-spread interest in the structure of ferrocene, and many leading scientists participated in the structure elucidation of this interesting new molecule. Wilkinson and Woodward were quick to suggest an alternative formulization where the iron is "sandwiched" between two cyclopentadiene ligands, with equal binding to all 10 carbon atoms (Figure 1, Structure II).4 Here, we will synthesize ferrocene and decide, based on experimental data (IR and 1H NMR), which of these structures is observed. In addition, we will study the electrochemistry of ferrocene by collecting a cyclic voltammogram. In the course of this experiment, we introduce the 18-electron rule and discuss valence electron counting for transition metal complexes.
Figure 1. Two proposed structures of ferrocene.
18-electron Rule and Total Valence Electron Counting:
When drawing Lewis dot structures, it is important to remember the octet rule, which states that atoms of main group elements have 8 electrons in their valence shell. However, the octet rule does not hold for transition metals, which have nine valence orbitals (one s, three p, and five d orbitals) and can thus accommodate as many as 18 electrons. Therefore, an 18-electron rule applies for transition metal complexes. Like the octet rule, there are exceptions to the 18-electron rule, but in general, transition metal complexes with 18 valence electrons are considered highly stable compounds.
There are two methods that can be used to determine the total valence electron count of a transition metal complex: the ionic (charged) model and the covalent (neutral) model.5 Proper application of either method should give rise to the same total electron count. Both models use three ligand classifications called X-, L-, and Z-types. Each ligand type contributes a different number of electrons to the total electron count and is dependent on the method used. X-type ligands include anionic groups such as halides, hydroxide, and alkoxides. L-type ligands include lone-pair donors such as amines and phosphines. Finally, Z-type ligands are electron pair acceptors; therefore, Z-type ligands are neutral Lewis acids, such as BR3. We will consider the molecule Co(NH3)3Cl3 in order to demonstrate the two methods (Figure 2).
Figure 2. Electron counting example, Co(NH3)3Cl3.
Ionic Model:
First, consider the number of electrons contributed by the central atom. Co is in Group 9 of the periodic table and thus has 9 valence electrons. In the ionic model, the oxidation state of the metal needs to be considered. Since the oxidation state of the Co in Co(NH3)3Cl3 is +3, the total number of valence electrons contributed by the metal in the ionic model is 6 e− (Table 1). In the ionic model, both X- and L-type ligands donate 2 e− to the total electron count while Z-type ligands do not contribute any electrons. For the example Co(NH3)3Cl3, there are two ligand types present. Cl is an X-type ligand and NH3 is an L-type ligand. Using the ionic model, the total electron count is 18 e− (Table 1).
Table 1. e− counting of Co(NH3)3Cl3 using the ionic and covalent models
Ligand/central atom | Ligand type | e− contribution
(ionic model) |
e− contribution
(covalent model) |
Co | n/a | 6 e− | 9 e− |
3 NH3 | L | 3 x (2 e−) | 3 x (2 e−) |
3 Cl | X | 3 x (2 e−) | 3 x (1 e−) |
Charge of ion | n/a* | − (0) | |
Total e− count | 18 e− | 18 e− |
*The charge of the metal-containing ion is NOT included in the total electron count using the ionic model. The charge is accounted for in the oxidation state of the metal (electrons contributed by the central atom).
Covalent Model:
For the covalent model, the e− contribution from the central atom is equal to the total number of valence e− for the neutral atom (in this case 9 e−). X-type ligands donate 1 e−, L-type ligands donate 2 e−, and Z-type ligands donate 0 e−. Finally, if the molecule is ionic, the charge of the ion containing the metal center needs to be subtracted from the metal plus the ligand electrons. Using the covalent model, the total electron count for Co(NH3)3Cl3 is also 18 e− (Table 1).
Electron Counting for Ferrocene and Ferrocenium Cation:
Using the covalent model, Fe has 8 e−. If we regard the bonding in ferrocene as that in Structure I, the cyclopentadiene (Cp) ligands are X-type donors and therefore each contribute 1 electron (Table 2). Thus, we would have 10 valence electrons. However, in Structure II, each Cp ring donates 5 electrons (L2X-type ligand), where we have two double bonds (each are 2-electron, L-type donors), and one X-type donor (the radical). This gives a total of 18 electrons (Table 2).
Table 2. Electron counting for ferrocene (Fc) and ferrocenium (Fc+) cation using the covalent model
Ligand/ central atom | Structure I | Structure II | ||||
Ligand type | Fc | Fc+ | Ligand Type | Fc | Fc+ | |
Fe | -- | 8 e− | 8 e− | -- | 8 e− | 8 e− |
Cp | X | 2 x (1 e−) | 2 x (1 e−) | L2X | 2 x (5 e−) | 2 x (5 e−) |
Charge of ion | − (0) | − (+1) | Charge of ion | − (0) | − (+1) | |
Total electron count | 10 e− | 9 e− | Total electron count | 18 e− | 17 e− |
Ferrocene readily undergoes a 1 e− oxidation to yield ferrocenium cation (Equation 1).
(1)
Let's consider the resulting electron count for the ferrocenium cation of Structures I and II. Upon a 1 e− oxidation, ferrocene becomes ionic. Therefore, the charge (+1) of the ferrocenium cation needs to be subtracted from the valence electrons (Table 2). Subtracting the charge results in total electron counts of 9 e− and 17 e− for Structure I and Structure II, respectively.
Which Structure of Ferrocene is Correct?:
If Structure I is correct, with only 10 valence electrons, ferrocene would be highly reactive at the Fe. Oxidation to yield the ferrocenium cation would be quite challenging in this case, since Structure I of ferrocene is electron deficient. On the other hand, Structure II of ferrocene obeys the 18-electron rule and is therefore consistent with ferrocene being a stable compound. In this case, oxidation of ferrocene to ferrocenium cation would yield a 17 e− species. Based on electron counting, one may predict that ferrocene exhibits Structure II; let's think about how to demonstrate the correct structure spectroscopically.
Before structural data was published, the structure of ferrocene was deduced from its magnetic and spectroscopic properties, as well as its reactivity. Let's consider the IR spectra that we would predict for the two structures. Structure I displays two chemically inequivalent protons and should thus give rise to more than one C-H stretching mode in the IR spectrum. In contrast, Structure II displays a single type of C-H bond and should thus display a single C-H stretch. Had NMR spectroscopy been readily available in the 1950's, this too would provide a clue: two resonances in the 1H spectrum for Structure I, and one resonance for Structure II would be predicted. In this experiment, we will synthesize ferrocene and use spectroscopic data to provide evidence for its structure.
1. Cracking the Cyclopentadiene Dimer (Figure 3)
Cyclopentadiene undergoes a Diels-Alder reaction with itself to give dicyclopentadiene. This reaction is reversible, so cracking is accomplished using La Châtelier's principle to drive the reverse reaction by distilling the cyclopentadiene monomer (b.p. 42 °C) away from the dicyclopentadiene dimer (b.p. 170 °C). The dimerization reaction is slow when the cyclopentadiene is kept cold, but it must be freshly prepared to successfully synthesize ferrocene.
Figure 3. Cracking of dicyclopentadiene.
2. Synthesis of Ferrocene (Figure 4)
Figure 4. Synthesis of ferrocene.
3. Purification of Ferrocene. Purify the product by sublimation (for a more detailed procedure, please see the "Purification of Ferrocene by Sublimation" video).
4. Characterization of Ferrocene
Ferrocene Characterization:
1H NMR (chloroform-d, 300 MHz, δ, ppm): 4.15 (s).
The 1H NMR spectrum of ferrocene clearly shows a single resonance, consistent with structure II.
A CV of ferrocene is given below. The E1/2 value obtained for the oxidation of ferrocene was +90 mV (acetonitrile, scan rate 100 mV/s, 0.1 M (Bu4N)PF6, glassy carbon working electrode). The ferrocene/ferrocenium redox couple is commonly used as a reference in cyclic voltammetry. When used as a reference, the E1/2 value of ferrocene is set equal to 0 V.
In this video, we discussed ferrocene and the role it played in the development of organometallic chemistry. Ferrocene was synthesized and characterized by 1H NMR and IR spectroscopy. Both spectra are consistent with the 18 e− Structure II, where the iron is "sandwiched" between two cyclopentadiene ligands, with equal binding to all 10 carbon atoms (Figure 1, Structure II). Oxidation of ferrocene to ferrocenium cation was observed electrochemically.
In 1973, following the structural characterization of ferrocene, Wilkinson was one of two chemists awarded the Nobel Prize in Chemistry "for [his] pioneering work … on the chemistry of the organometallic, so called sandwich complexes".6 His work greatly influenced and expanded the emerging field of organometallic chemistry. While the first organometallic compound was prepared in 1849, it was only in the 1950's that significant advancements were made to understanding how metals can bond to carbon atoms. Today, the field of organometallic chemistry, or the chemistry of compounds that form metal-carbon bonds, is central to many applications. This includes: energy, dye-sensitized solar cells, catalysis, polymerization, drug discovery and synthesis, bioinorganic systems, and organic light-emitting diodes (OLEDs).7
Ferrocene itself also plays an active role in the field of organometallic chemistry. Ferrocene readily participates in electrophilic aromatic substitution; in fact, it is 100,000 times more reactive than benzene in these reactions. Ferrocene has found widespread application as a structural component of bidentate ligands in organometallic catalysis. For example, 1,1'-bis(diphenylphosphino)ferrocene (dppf) is a chelating ligand used in homogeneous catalysis. The ligand dppf chelates 1st, 2nd, and 3rd row transition metals including Ni, Pd, and Pt. [1,1'-Bis(diphenylphosphino) ferrocene]palladium(II) dichloride is an example of a palladium cross-coupling catalyst for C-C and C-heteroatom bond formation (Figure 5).8 In the video "MO Theory of Transition Metal Complexes", we will synthesize two metal complexes featuring dppf.
Figure 5. [1,1'-Bis(diphenylphosphino) ferrocene]palladium(II) dichloride is a cross-coupling catalyst for C-C and C-X bond formation.
1. Kealy, T. J., Pauson, P. L. A New Type of Organo-Iron Compound. Nature. 168 (4285), 1039-1040 (1951).
2. Pauson, P. L. Ferrocene—how it all began. J Organomet Chem. 637, 3-6 (2001).
3. Seeman, J. I., Cantrill, S. Wrong but seminal. Nat Chem. 8 (3), 193-200 (2016).
4. Wilkinson, G., Rosenblum, M., Whiting, M. C., Woodward, R. B. The Structure of Iron Bis-cyclopentadienyl. 74, 2125-2126 (1952).
5. Green, M. L. H., Parkin, G. Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry. J Chem Educ. 91 (6), 807-816 (2014).
6. Press Release. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1973/press.html.
7. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 6th ed. John Wiley & Sons. Hoboken. 2014.
8. Gildner, P. G., Colacot, T. J. Reactions of the 21st Century: Two Decades of Innovative Catalyst Design for Palladium-Catalyzed Cross-Couplings. Organometallics. 34, 5497-5508 (2015).
Skip to...
Videos from this collection:
Now Playing
Inorganic Chemistry
79.1K Views
Inorganic Chemistry
31.5K Views
Inorganic Chemistry
18.6K Views
Inorganic Chemistry
54.3K Views
Inorganic Chemistry
67.9K Views
Inorganic Chemistry
103.9K Views
Inorganic Chemistry
25.3K Views
Inorganic Chemistry
21.9K Views
Inorganic Chemistry
38.7K Views
Inorganic Chemistry
44.9K Views
Inorganic Chemistry
35.1K Views
Inorganic Chemistry
15.3K Views
Inorganic Chemistry
15.7K Views
Inorganic Chemistry
51.5K Views
Inorganic Chemistry
16.7K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved