Method Article
This protocol describes the evaluation process of healing tendons in rats that have been injected with allogeneic platelet rich plasma (PRP) or saline solution after removing part of the Achilles tendon. The progress of tendon healing is evaluated at several time points using different types of analyses.
This article describes the experimental procedures used to observe if PRP can positively affect tendon healing. There are 4 main steps to follow: induce a lesion in the Achilles tendon; prepare PRP and inject it (or the saline solution); remove the tendon; and perform biomechanical, molecular, and histological evaluations. At each step, all the procedures and methods are described in detail, so they can be reproduced easily.
Achilles tendons have been surgically sectioned (removal of a 5-mm long section). Afterwards, PRP or saline solution was injected to study whether PRP has a positive effect on the healing of the tendon. Three groups of 40 animals (a total of 120 rats were used in this study) were subdivided into 2 subgroups: PRP injection group and a saline injection control group. Rats were sacrificed at increasing time points (Group A: 5 days; Group B: 15 days; Group C: 30 days) and tendons were removed. 90 tendons underwent biomechanical testing before performing transcriptomic analysis and the 30 remaining tendons were submitted to histological analysis.
Coagulation, inflammatory processes, and the immunity modulation roles of platelets are well known1. More recently, it has been demonstrated that they also have restorative properties2,3. Indeed, various cytokines and growth factors (VEGF, PDGF, TGF-B, IGF-I, and HGF) are released by platelets during degranulation. These growth factors promote angiogenesis, tissue remodeling, and wound healing (bone, skin, muscle, tendon)2. Centrifuging autologous blood produces platelet rich plasma (PRP) which contains high platelet concentrations depending on the isolation method (between 3 and 10 times blood baseline concentrations). Indeed, various PRP preparation techniques cannot provide an identical final product. Up to now, there has been no international general agreement on this issue. Overall, PRP could be an attractive therapeutic option for treating chronic musculoskeletal conditions, such as tendinopathy, plantar fasciitis, osteoarthritis, and nonunion4. It was used for the first time in oral surgery and implantology4 to improve and accelerate bone healing after placing a dental implant. In this study, we describe a reproducible method that allows the acquisition of PRP for animal experimentation4.
Since lesions of tendons are frequently observed in sportsmen and physical workers, enhancing the healing process and thus reducing the time for recovery are of great interest5. New treatment methods that are developing often involve the use of growth factors, and the administration of PRP is a simple and minimally invasive way to deliver a blend of endogenous growth factors4.
Several in vitro or animal studies have demonstrated that the administration of plasma containing a high level of platelets, by releasing biological mediators, can stimulate tendon and ligament repair by releasing biological mediators6,7,8,9. Furthermore, other studies have shown that PRP can stimulate type I and III collagen synthesis in tendon cells9,10,11. It has also been suggested that PRP can decrease the activation of matrix metalloproteinases (MMPs) and therefore reduce the degradation of the matrix. Cells that are involved in the inflammation process can produce MMP-9, which plays a role in tissue remodeling (physiologic and pathologic) induced by inflammation12.
Based on this information, we hypothesized that a single PRP injection into the sectioned Achilles tendons of rats could improve the recovery process and the mechanical strength of the repaired tissue. This is tested by measuring the biomechanical properties of the healing tendons during the recovery process and by performing histological and molecular analyses to evaluate collagen remodeling in the newly formed tissue. The aim of the study was to observe if a single injection of allogeneic PRP could influence the healing of sectioned Achilles tendons.
Care and handling of the animals were performed in accordance with the Guide for the Care and Use of Laboratory Animals prepared by the National Academy of Sciences and published by the National Institutes of Health (USA). European and national legislation were followed carefully.
1. Animal Preparation
2. Surgical Procedure
3. PRP Preparation15
4. Removal of Achilles tendon and Biomechanical Testing16
5. Histological Analysis
NOTE: 15 tendons of each group underwent histological analysis.
6. Molecular Evaluation
The results are expressed as the mean ± standard deviation of the mean and were compared with analysis of variance (ANOVA). A two-way ANOVA and post hoc test de Scheffé, which is a parametric test, were used.
The ultimate tensile strength (UTS) required to provoke a rupture of the non-injured Achilles tendons of rats was 42.0 ± 5.7 N (n = 10). The tensile strength increased significantly (p<0.0001) in both groups after day 5. Comparing both groups, the UTS was higher in the PRP group at any time measured, especially at day 15 and 30. By measuring the cross-sectional area of the tendons that were removed before undergoing biomechanical evaluation (11.4 ± 5.5 mm2 for non-injured tendons), it was found that at day 5, it was larger in the saline treated group. But at day 15 and 30, the cross-sectional area was larger in the PRP group, although this quantity was more variable when compared to the saline treated group (Figure 4 and Figure 5).
The histological evaluation of the tendons, using hematoxylin-eosin staining, showed a high cellularity at day 5, which decreased afterwards (no significant difference was observed between the saline solution and PRP group). The Masson's Trichrome staining showed a higher presence of fibrillar collagen in the PRP group at day 5 and 15. However the intensity of the staining was similar in both groups 30 days after injection (Figure 6). The semi-quantification obtained by staining the samples with Light Green showed that at day 5 and 15, the intensity was higher in the PRP group (not statistically significant) but at day 30, there was no difference observed between the two groups.
The data was normalized by measuring the amount of an amino acid, hydroxyproline, which is specific to collagen, confirming the histological semi-quantification (day 5: larger value in PRP group). The collagen concentration was not stable in the PRP group but was stabilized at day 30 in the two groups. The volume of the callus was measured and was found to be significantly larger in PRP-treated animals during the first stages of the healing process. Taken together, these results imply that the PRP injection into the injured tendon causes an important amount of fibrillar collagen to deposit.
Measuring the expression level of several molecules showed that in non-injured tendons, Col III and TNMD were present in a lesser amount (2.5-3.0 times) than in healing tendons at day 15, however there was no difference in Col I expression between the groups. MMPs were present at a 12-fold higher concentration in the healing tendons. In addition, at day 30, there was a significant increase of COL1A1 in the PRP group, and a positive correlation between COL1A1 expression and the UTS was found. In both groups, it was found that Col III was expressed in a high quantity from day 1 until day 14, before it decreased (same for both groups). MMP-9 concentration did not change in both groups but MMP-2 and MMP-3 were present at higher concentrations during the healing period. At day 5, TNDM was expressed in a higher amount in the PRP (p<0.03) but then decreased between day 15 and 30.
Figure 1: Experimental design of the study. Please click here to view a larger version of this figure.
Figure 2: Surgical Procedure.
(a) The tendon complex after removal of the surrounding fascia.
(b) Removal of the plantaris tendon.
(c) Removal of a section of the Achilles tendon.
(d) The 2 tendons that have been removed. Please click here to view a larger version of this figure.
Figure 3: Biomechanical Testing
(a) Universal testing machine (106.2 kN).
(b) The muscle-tendon-bone complex that will be fixed into the cryo-jaw.
(c) Upper and lower cryo jaw
(d) Upper and lower cryo-jaw
(e) The complex put into the cryo jaw
(f) The closed cryo-jaw containing the muscle-tendon-bone complex fixed into the machine. Please click here to view a larger version of this figure.
Figure 4: Biomechanical Testing Results
Tensile strength expressed in Newtons (N) in control and PRP groups at the different time points after surgery. There was an increase of UTS in both groups over time, with the PRP group showing significantly higher values at 15 and 30 days after surgery.
Error bar defines the standard deviation (SD). Please click here to view a larger version of this figure.
Figure 5: Biomechanical Testing Results
Transverse area of the tendon expressed in square millimeters (mm2). The cross-sectional area was significantly greater in the PRP group until day 15. Afterwards, the section was similar in both groups.
Error bar defines the standard deviation (SD). Please click here to view a larger version of this figure.
Figure 6: Histological results
Representative longitudinal sections of the Achilles tendon from control and PRP groups, stained with Masson's Trichrome. Scale bar = 100 µm. There is a stronger green staining in the tendon of the PRP group at day 5. Please click here to view a larger version of this figure.
Platelets are essential for the early inflammatory phase of the tendon healing process. When these platelets are exposed to binding tissue or factors that induce coagulation, they will release growth factors that are stocked in α granules. Due to this interaction, extracellular matrix macromolecules are synthetized and mesenchymal cells proliferate. Platelets also have a chemotactic activity on progenitor cells in the blood circulation, enhancing angiogenesis and stimulating cellular differentiation6,20.
Biomechanical testing was done using a clamping device specially made for ex vivo tensile testing of the Achilles tendon in rats15. The cryo-jaw allows the freezing of the muscle by adding liquid nitrogen, and the calcaneal bone, which is the lower part of the specimen, is directly fixed into the machine. It is very important to start the tensile test when the muscle is completely rigid, but the tendon is still flexible. This technique avoids tissue damage and preserves the mechanical integrity. Also this technique is simple, secure, non-compressive, and demonstrably reproducible, as several studies have used this method4,15.
To support the mechanical results, some tendons underwent histological evaluation. The hematoxylin-eosin staining shows a great overview of the healed tissue and gives general information about the quantity of cells and collagen present. Also, the measurement of hydroxyprolin is useful as it is an amino acid only found in collagen and allows the objectivation of the histological data. However, it is necessary to do a Masson's Trichrome staining, as it shows much more detailed information about the deposition and concentration of collagen fibers4.
Although the level of collagen III mRNA in the PRP treated tendons was not altered, at day 30 mRNA of Col I was present in a higher concentration in the injured tendons treated with PRP. Previously it had been shown that PRP interferes with the proliferation of macrophages and the production of IL-121, which thus could avoid an excessive inflammatory reaction during the early stages of the healing process11. It is possible that PRP stimulates the proliferation, the activation of metabolic pathways, and the transformation of mesenchymal cells into tenocytes that are active.
High concentrations of TNDM in the tendons of the PRP group indicate that the injected molecules could attract cells circulating in the blood stream and induce a differentiation toward the tenocyte phenotype11. Taken together, these results demonstrate that only one injection of PRP into a ruptured Achilles tendon has a positive effect on the early healing phase and leads to a higher mechanical strength.
Several pre-clinical studies have already shown that PRP improves the healing process, and that the different growth factors have specific actions during this process22. Mazzocca and his team demonstrated that PRP stimulates cell proliferation in muscles, bones, and tendons. Out of different preparations, strongly concentrated PRP without any white blood cells proved to be the most effective treatment23. McCarrell et al. did a similar experiment, testing several preparations of PRP containing different concentrations of PRP and white blood cells on horse tendons. Preparations containing an intermediate concentration of platelets and a high concentration of white blood cells led to a higher release of pro-inflammatory cytokines, such as IL-1ß and TNFa, and lower collagen synthesis. Mixtures with a high concentration of platelets and white blood cells also led to an increase of inflammatory cytokines but inhibited collagen synthesis. In conclusion this means that if the platelet concentration is too high, collagen synthesis and cell metabolism are slowed down24. Boswell et al. confirmed these findings25. The most efficient PRP preparation would thus contain a platelet concentration lower than 106 platelets/µL and no white blood cells.
A major advantage of using PRP is autogenity. Although in our study, we used allogeneic PRP by sacrificing donor rats to have a sufficient amount of blood. Furthermore, taking blood from the operated rats would weaken them too much. Another limitation of this study is that all the ruptures are acute and performed on healthy tendons, which is not always the case in humans, as the tendons often rupture because of prior degeneration. This model being based on sharp tendon injuries, no definitive conclusions can be drawn for degenerative tendinopathies.
Using this method, there are some critical steps to remember, the first one being the preparation of PRP, which should be as reproducible as possible. Another critical step is the surgical procedure: the removal of the tendon and muscle-tendon complex should be done in a reproducible way to avoid any bias. Lastly, the preparation for biomechanical testing: liquid nitrogen is added to freeze the muscle, and it is quite important that the tendon is not frozen in this process because it could lead to biased results, as the tendon stiffness would be altered. This is also a limitation of the study, since there is no standardized protocol to ensure that the tendon's elasticity is not modified.
We based our method on the method developed by Virchenko et al. 26, but adapted it using the cryo-jaw which protects the tendon against exterior aggressions induced by clamps. The major advantage of this method is that it is reproducible even if it is not yet standardized. It gives an idea about how tendon injuries could be treated in humans, though experiments with rats don't always translate well to treating human injuries. It is likely that an adapted version of this method can be useful in treating those injuries in the future, supported by the fact that it's easy to use, has a relatively low cost, and is less invasive than other methods.
No conflicts of interest declared.
This study was supported by Standard de Liège and Lejeune- Lechien grants of the Leon Frédéricq Funds.
Name | Company | Catalog Number | Comments |
Xylazine (Xyl-M) | VMD | none | anesthetic |
Ketamin (Jétamine 1000 CEVA) | CEVA Santé Animale | none | anesthetic |
Buprenorphin (Vetergésic Multidosis) | ALSTOE | none | Painkiller |
iso-Betadine | MEDA-Pharma | none | Desinfectant |
resorbable yarn Vicryl 6/0 | Johnson & Johnson | ||
Nembutal | CEVA Santé Animale | none | Anesthetic |
Paraformaldehyde | Sigma-Aldrich | P6148 | Preserves structure of the tissue |
Isopropanol 100% | VWR | 20,922,364 | |
Ethanol 95% | VWR | 20,823,362 | |
Xylene | VWR | 28973.363 | |
Paraffin | VWR | LEIC3950.1006 | |
Hematoxylin | Millipore | 1.15938.0025 | Colorant |
Eosin | Millipore | 1.15935.0100 | Colorant |
Eukitt | Sigma-Aldrich | 3989 | Mounting Medium |
CaCl2 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved