Method Article
В этой работе описывается получение клеточного экстракта из кишечной палочки (E. coli) с последующими реакциями бесклеточного синтеза белка (CFPS) менее чем за 24 часа. Объяснение протокола бесклеточной аутоиндукции (CFAI) детализирует улучшения, сделанные для уменьшения надзора исследователей и увеличения количества получаемого клеточного экстракта.
Бесклеточный синтез белка (CFPS) вырос как биотехнологическая платформа, которая захватывает механизмы транскрипции и трансляции in vitro. Многочисленные разработки сделали платформу CFPS более доступной для новых пользователей и расширили спектр приложений. Для систем CFPS на основе лизата клеточные экстракты могут быть получены из различных организмов, используя уникальную биохимию этого хозяина для увеличения синтеза белка. За последние 20 лет Escherichia coli (E. coli) стала одним из наиболее широко используемых организмов для поддержки CFPS из-за его доступности и универсальности. Несмотря на многочисленные ключевые достижения, рабочий процесс подготовки экстракта клеток E. coli остается ключевым узким местом для новых пользователей, чтобы внедрить CFPS для своих применений. Процесс подготовки выписки занимает много времени и требует технических знаний для достижения воспроизводимых результатов. Чтобы преодолеть эти барьеры, мы ранее сообщали о разработке 24-часового рабочего процесса автоиндукции без клеток (CFAI), который снижает пользовательский вклад и требуемые технические знания. Рабочий процесс CFAI сводит к минимуму трудозатраты и технические навыки, необходимые для создания клеточных экстрактов, а также увеличивает общее количество полученных клеточных экстрактов. Здесь мы пошагово описываем этот рабочий процесс для улучшения доступа и поддержки широкого внедрения CFPS на основе E. coli .
Использование бесклеточного синтеза белка (CFPS) для применения в биотехнологии значительно выросло за последние несколько летна 1,2,3. Это развитие можно отчасти объяснить активизацией усилий по пониманию процессов, происходящих в ХФПС, и роли каждого компонента 4,5. Кроме того, снижение затрат, связанных с оптимизированными установками и альтернативными источниками энергии, облегчило внедрение бесклеточной технологии для новых пользователей 6,7,8,9. Чтобы реализовать необходимые факторы транскрипции и трансляции для синтеза белка, клеточный экстракт часто используется для управления бесклеточными реакциями10. Недавно опубликованные руководства пользователя предоставили простые протоколы для создания функционального извлечения, что облегчает его реализацию для новых и опытных пользователей, как 1,11,12,13,14. Клеточный экстракт обычно получают путем лизиса клеточной культуры, которая может быть выращена с использованием различных организмов в зависимости от желаемого конкретного использования 1,15,16.
Кишечная палочка (E. coli) быстро стала одним из наиболее часто используемых организмов-хозяев для производства функциональных экстрактов17. Штамм BL21 Star (DE3) является предпочтительным, поскольку он удаляет протеазы из внешней мембраны (протеаза OmpT) и цитоплазму (протеаза Lon), обеспечивая оптимальную среду для экспрессии рекомбинантного белка. Кроме того, DE3 содержит λDE3, который несет ген T7 РНК-полимеразы (T7 RNAP) под контролем промотора lacUV5; звездный компонент содержит мутировавший ген RNaseE, который предотвращает расщепление мРНК 4,14,18,19. Под действием промотора lacUV5 индукция изопропил-тиогалактопиранозида (IPTG) позволяет экспрессировать T7 RNAP20,21. Эти штаммы используются для выращивания и сбора клеток, которые дают сырье для приготовления экстракта. Лизис клеток может быть выполнен с использованием различных методов, включая биение шариков, френч-пресс, гомогенизацию, обработку ультразвуком и кавитацию азота 1,11,12,22.
Процесс культивирования и сбора бактерий согласован на большинстве платформ при использовании кишечной палочки, но требует нескольких дней и интенсивного надзора исследователей 1,11,13. Этот процесс обычно начинается с ночной посевной культуры в бульоне LB, которая после ночного роста затем инокулируется в более крупную культуру 2xYTPG (дрожжи, триптон, фосфатный буфер, глюкоза) на следующий день. Рост этой более крупной культуры контролируется до тех пор, пока она не достигнет ранней и средней фазы log, при оптической плотности (OD) 2,514,20. Постоянное измерение требуется, поскольку компоненты транскрипции и перевода ранее были продемонстрированы как очень активные в начале-середине фазылогарифма 23,24. Хотя этот процесс может создать воспроизводимый экстракт, наша лаборатория недавно разработала новый метод с использованием бесклеточной автоиндукционной среды (CFAI), который уменьшает надзор исследователей, увеличивает общий выход экстракта для данного литра клеточной культуры и улучшает доступ к препарату экстракта на основе кишечной палочки как для опытных, так и для новых пользователей (рисунок 1). ). Здесь мы предоставляем пошаговое руководство по реализации рабочего процесса CFAI, чтобы перейти от полосатой пластины клеток к завершенной реакции CFPS в течение 24 часов.
1. Рост СМИ
2. Сбор клеток
3. Подготовка экстракта
4. Бесклеточный синтез белка
5. Количественная оценка репортерного белка, супер папка зеленого флуоресцентного белка (sfGFP)
При приготовлении среды CFAI глюкозу обменивали на увеличение лактозы и глицерина в качестве основного энергетического субстрата в среде. Кроме того, была увеличена буферная способность сред CFAI. Эти конкретные компоненты приведены в таблице 1.
Затем клетки выращивали как до OD600 10 , так и до стандартного 2,5 в средах CFAI, чтобы показать согласованность с качеством экстракта, несмотря на различные количества экстракта. Среду 2,5 OD600 CFAI выращивали после инокуляции из посевной культуры в бульоне LB при 37 °C, 200 об/мин, в то время как культуру OD600 10 прививали непосредственно с пластины. Затем каждая партия сред CFAI контролировалась и собиралась по соответствующему OD600. Рост до OD600 из 10 привел к увеличению более высокого количества клеточной гранулы и общего полученного экстракта, поскольку он произвел 9,60 мл экстракта по сравнению с 2,10 мл экстракта, полученного от роста до 2,5 OD600 (рисунок 2). Дальнейший анализ общей концентрации белка не продемонстрировал существенной разницы в общем содержании белка в каждом экстракте (таблица 5). Несмотря на то, что они были выращены до разных уровней оптической плотности, обе партии экстракта продемонстрировали сходные результаты в бесклеточных реакциях с использованием sfGFP (рисунок 3). Это говорит о том, что сочетание повышенной буферной способности, использования лактозы и глицерина в качестве основного источника углерода и внедрения лактозы вместо IPTG для индукции T7RNAP помогают стабилизировать рост экстракта до любого OD600 ниже 10.
Автоклавный CFAI Media: | |
Компоненты | Количество |
Хлорид натрия | 5.0 г |
Триптон | 20.0 г |
Дрожжевой экстракт | 5.0 г |
Фосфат калия одноосновный | 6.0 г |
Фосфат калия двухосновный | 14.0 г |
НаночистаяТМ Вода | Заполните в общей сложности до 960 мл |
Фильтр Стерилизованного сахарного раствора: | |
Компоненты | Количество |
D-глюкоза | 0,50 г |
D-лактоза | 4.0 г |
80% v/v глицерина | 7,5 мл |
НаночистаяТМ Вода | 28.0 мл |
Таблица 1: Компоненты CFAI. Компоненты для сред CFAI и растворов сахара с соответствующими количествами. Среду следует перемешивать на протяжении всего добавления каждого компонента и стерилизовать фильтр раствора сахара. Каждый раствор следует добавлять в отдельный стерильный контейнер перед прививкой.
Буфер S30 | |
Компоненты | Концентрация |
Трисацетат рН 8,2 при комнатной температуре | 10 мМ |
Ацетат магния | 14 мМ |
Ацетат калия | 60 мМ |
Дитиотрейтол | 2 мМ |
Таблица 2: Компоненты буфера S30: Компоненты для буфера S30 добавляли с их соответствующими количествами в стерильную коническую трубку объемом 50 мл.
Компонент | Количество |
Решение А | 2.20 мкл |
Решение B | 2.1 мкл |
Экстракт | 5 мкл |
Шаблон ДНК | Объем для конечного 16 мкг/мл |
Вода | Заполните в общей сложности до 15 мкл |
Таблица 3: Реакционные соотношения CFPS: относительная объемная процентная доля для раствора А, раствора В и экстракта. Объем ДНК может варьироваться в зависимости от концентрации конкретной плазмиды и, возможно, потребуется оптимизировать для конкретной используемой плазмиды пользователя.
Решение А | Решение B | ||
Компоненты | Концентрация | Компоненты | Концентрация |
СПС | 1,2 мМ | Глутамат магния | 10 мМ |
ГТП | 0.850 мМ | Глутамат аммония | 10 мМ |
УТП | 0.850 мМ | Глутамат калия | 130 мМ |
ОСАГО | 0.850 мМ | Фосфоэнолпируват (PEP) | 30 мМ |
Фолиевая кислота | 31,50 мкг/мл | L-Валин | 2 мМ |
тРНК | 170,60 мкг/мл | L-триптофан | 2 мМ |
Никотинамидадениндинуклеотид (NAD) | 0.40 мМ | L-изолейцин | 2 мМ |
Коэнзим А | 0.27 мМ | L-лейцин | 2 мМ |
Щавелевая кислота | 4.00 мМ | L-цистеин | 2 мМ |
Путресцин | 1.00 мМ | L-метионин | 2 мМ |
Спермидин | 1.50 мМ | L-аланин | 2 мМ |
HEPES Буфер pH 7,5 | 57.33 мМ | L-аргинин | 2 мМ |
L-аспарагин | 2 мМ | ||
L-аспарагиновая кислота | 2 мМ | ||
L-глутаминовая кислота | 2 мМ | ||
L-глицин | 2 мМ | ||
L-глютамин | 2 мМ | ||
L-гистидин | 2 мМ | ||
L-лизин | 2 мМ | ||
L-пролин | 2 мМ | ||
L-серин | 2 мМ | ||
L-треонин | 2 мМ | ||
L-фенилаланин | 2 мМ | ||
L-тирозин | 2 мМ |
Таблица 4: Компоненты раствора А и В. Исходные концентрации для компонентов для раствора А и В добавляли с их соответствующими количествами, каждый в микрофьюжной пробирке объемом 1,5 мл.
Экстракт | Общая концентрация белка (мкг/мл) | Стандартное отклонение |
2xYTPG 2.5 OD | 30617 | 3745 |
CFAI 2.5 ОД | 30895 | 2254 |
CFAI 10.0 ОД | 27905 | 3582 |
Таблица 5: Общий выход экстракта белка. Анализ общего белка различных наростов клеточного экстракта. Общую концентрацию белка определяли с помощью анализа Брэдфорда. Каждую концентрацию определяли из трех частей с использованием разведения 1:40.
Рисунок 1: Сравнение CFAI и типичного рабочего процесса от ячеек к CFPS: Сравнение общей временной шкалы от ячеек к CFPS с использованием (A) рабочего процесса CFAI (слева, красный) по сравнению с (B) ранее установленным методом (зеленый, правый). Сравнение демонстрирует снижение надзора исследователей и сроков при выполнении CFPS с использованием рабочего процесса CFAI. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
Рисунок 2: Сравнение размеров гранул CFAI. Сравнение гранул среды CFAI после сбора клеток при различном OD600. Среда, выращенная до OD600 2,5, производила гранулу ячейки 2,23 г (слева), а среда, выращенная до OD600 из 10, производила гранулу ячейки 9,49 г (справа). Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
Рисунок 3: Влияние роста на выход реакции CFPS. (A) Сравнение выходов реакции CFPS между ростом до 2,5 OD600 и 10 OD600 с (B) изображениями каждой реакции CFPS выше их соответствующего выхода. Бесклеточные реакции проводили в микрофьюжной трубке объемом 1,5 мл и количественно оценивали после 24 ч инкубации при 37 °C с использованием стандартной кривой для корреляции флуоресценции с концентрацией sfGFP. «Отрицательный» соответствует набору негативных контрольных реакций, в которые не была добавлена шаблонная ДНК. Традиционные среды 2xYTPG (положительный контроль) и экстракты CFAI имеют одинаковое качество, что подтверждается их высоким выходом CFPS. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
Надзор исследователей традиционно необходим для двух ключевых действий во время роста клеток: индукции T7 RNAP и сбора клеток при определенном OD600. CFAI устраняет оба этих требования, чтобы сократить время исследователя и техническую подготовку, необходимую для приготовления высококачественных клеточных экстрактов. Аутоиндукция T7 RNAP достигается путем замены глюкозы лактозой в качестве первичного сахара в среде, устраняя предыдущую необходимость активно контролировать рост, а затем индуцировать IPTG в точной точке во время роста клеток. Необходимость активного мониторинга клеточных культур для сбора урожая при определенном OD600 также устраняется, отвязывая исследователя от клеточной культуры. Это дополняет недавнюю работу, которая также продемонстрировала производство качественных экстрактов, собранных в нетрадиционные времена 13,25,26. Формула новой среды улучшает буферную способность и источники углерода для поддержки активного энергетического метаболизма, даже когда клеточная культура приближается к стационарной фазе. Способность получать надежные клеточные экстракты из культур с высоким содержанием OD600 позволяет исследователю собирать культуры в удобное для нихвремя 27. Рабочий процесс, который мы предпочитаем и рекомендуем, заключается в том, чтобы привить культуру вечером и вернуться к сбору урожая на следующее утро.
Сбор клеток при более высоком OD600 также приводит к значительно большему количеству клеток, полученных для приготовления экстракта. Для опытных исследователей стоит отметить, что клеточная гранула намного темнее по цвету по сравнению с клетками, выращенными в среде 2xYTPG, даже при сборе при OD600 2,5. Также важно отметить, что если вся клеточная гранула обрабатывается сразу, большое количество повторного суспензии, полученного на ячейку гранулы при выполнении лизиса с помощью ультразвука, займет некоторое время. Следовательно, важно держать все аликвоты холодными во время этого процесса 11,13,14. Увеличение объема экстракта на прирост пропорционально снижает затраты и поддерживает биопроизводственные приложения. Благодаря продемонстрированным улучшениям рабочий процесс CFAI обеспечивает более простой протокол для новых и опытных пользователей бесклеточной технологии для производства воспроизводимого, функционального экстракта E. coli.
Несмотря на преимущества предоставляемых носителей CFAI, у этого метода существуют ограничения. Основная проблема заключается в зарождающемся характере рабочего процесса. В то время как анализ метаболомики пролил свет на различия в экстрактах CFAI OD600 10, а также продуктах реакции по сравнению с 2xYTPG, последствия этих различий для конкретных применений остаются нехарактерными27. Кроме того, этот рабочий процесс был разработан для лизата на основе BL21 E. coli. Неясно, будет ли переформулирование среды поддерживать надежный препарат экстракта из других штаммов E. coli, таких как геномно перекодированные штаммы E. coli28,29. Возможно, что подход CFAI может быть использован для получения экстрактов из других бактериальных организмов, но он вряд ли поддержит подготовку экстракта для эукариотических организмов, таких как яичник китайского хомяка или ретикулоцит кролика; однако они имеют свои собственные установленные методы30,31. Мы ожидаем, что простота рабочего процесса CFAI уменьшит барьеры и побудит бесклеточное сообщество охарактеризовать и оценить его полезность для широкого спектра применений, поддерживаемых CFPS.
Авторы заявляют, что у них нет конкурирующих финансовых конфликтов интересов.
Авторы хотели бы поблагодарить доктора Дженнифер ВандерКелен и Андреа Лаубшер за техническую поддержку. Авторы также хотели бы поблагодарить Николь Грегорио, Макса Левина, Алиссу Маллин, Бюнгчеола Со, Августа Бруквелла, Элизабет (Лиззи) Воеводу, Логана Беррингтона и Джиллиан Касман за полезные обсуждения. Авторы также признают финансовую поддержку со стороны Фонда Билла и Линды Фрост, Центра приложений в биотехнологии Chevron Biotechnology Applied Research Endowment Grant, Cal Poly Research, Scholarly и Национального научного фонда (NSF-1708919).
Name | Company | Catalog Number | Comments |
1.5 mL Microfuge Tubes | Phenix | MPC-425Q | |
1L Centrifuge Tube | Beckman Coulter | A99028 | |
Avanti J-E Centrifuge | Beckman Coulter | 369001 | |
CoA | Sigma-Aldrich | C3144-25MG | |
Cytation 5 Cell Imaging Multi-Mode Reader | Biotek | BTCYT5F | |
D-Glucose | Fisher | D16-3 | |
D-Lactose | Alfa Aesar | J66376 | |
DTT | ThermoFisher | 15508013 | |
Folinic Acid | Sigma-Aldrich | F7878-100MG | |
Glycerol | Fisher | BP229-1 | |
Glycine | Sigma-Aldrich | G7126-100G | |
HEPES | ThermoFisher | 11344041 | |
IPTG | Sigma-Aldrich | I6758-1G | |
JLA-8.1000 Rotor | Beckman Coulter | 366754 | |
K(Glu) | Sigma-Aldrich | G1501-500G | |
K(OAc) | Sigma-Aldrich | P1190-1KG | |
KOH | Sigma-Aldrich | P5958-500G | |
L-Alanine | Sigma-Aldrich | A7627-100G | |
L-Arginine | Sigma-Aldrich | A8094-25G | |
L-Asparagine | Sigma-Aldrich | A0884-25G | |
L-Aspartic Acid | Sigma-Aldrich | A7219-100G | |
L-Cysteine | Sigma-Aldrich | C7352-25G | |
L-Glutamic Acid | Sigma-Aldrich | G1501-500G | |
L-Glutamine | Sigma-Aldrich | G3126-250G | |
L-Histadine | Sigma-Aldrich | H8000-25G | |
L-Isoleucine | Sigma-Aldrich | I2752-25G | |
L-Leucine | Sigma-Aldrich | L8000-25G | |
L-Lysine | Sigma-Aldrich | L5501-25G | |
L-Methionine | Sigma-Aldrich | M9625-25G | |
L-Phenylalanine | Sigma-Aldrich | P2126-100G | |
L-Proline | Sigma-Aldrich | P0380-100G | |
L-Serine | Sigma-Aldrich | S4500-100G | |
L-Threonine | Sigma-Aldrich | T8625-25G | |
L-Tryptophan | Sigma-Aldrich | T0254-25G | |
L-Tyrosine | Sigma-Aldrich | T3754-100G | |
Luria Broth | ThermoFisher | 12795027 | |
L-Valine | Sigma-Aldrich | V0500-25G | |
Mg(Glu)2 | Sigma-Aldrich | 49605-250G | |
Mg(OAc)2 | Sigma-Aldrich | M5661-250G | |
Microfuge 20 | Beckman Coulter | B30134 | |
Molecular Grade Water | Sigma-Aldrich | 7732-18-5 | |
NaCl | Alfa Aesar | A12313 | |
NAD | Sigma-Aldrich | N8535-15VL | |
New Brunswick Innova 42/42R Incubator | Eppendorf | M1335-0000 | |
NH4(Glu) | Sigma-Aldrich | 09689-250G | |
NTPs | ThermoFisher | R0481 | |
Oxalic Acid | Sigma-Aldrich | P0963-100G | |
PEP | Sigma-Aldrich | 860077-250MG | |
Potassium Phosphate Dibasic | Acros, Organics | A0382124 | |
Potassium Phosphate Monobasic | Acros, Organics | A0379904 | |
PureLink HiPure Plasmid Prep Kit | ThermoFisher | K210007 | |
Putrescine | Sigma-Aldrich | D13208-25G | |
Spermidine | Sigma-Aldrich | S0266-5G | |
Tris(OAc) | Sigma-Aldrich | T6066-500G | |
tRNA | Sigma-Aldrich | 10109541001 | |
Tryptone | Fisher Bioreagents | 73049-73-7 | |
Tunair 2.5L Baffled Shake Flask | Sigma-Aldrich | Z710822 | |
Ultrasonic Processor | QSonica | Q125-230V/50HZ | |
Yeast Extract | Fisher Bioreagents | 1/2/8013 |
An erratum was issued for: From Cells to Cell-Free Protein Synthesis within 24 Hours using Cell-Free Autoinduction Workflow. The Authors section was updated.
The Authors section was updated from:
Philip E.J. Smith1,2, Taylor Slouka1,2, Javin P. Oza1,2
1Department of Chemistry and Biochemistry, California Polytechnic State University
2Center for Application in Biotechnology, California Polytechnic State University
to:
Philip E.J. Smith1,2, Taylor Slouka1,2, Mona Dabbas 1,2, Javin P. Oza1,2
1Department of Chemistry and Biochemistry, California Polytechnic State University
2Center for Application in Biotechnology, California Polytechnic State University
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены