Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California
Decision-making is an important component of human executive function, in which a choice about a course of action or cognition is made from many possibilities. Damage to the inferior parts of the frontal lobes can affect a person's ability to make good decisions. However, while decision-making deficits can have a large impact on one's life, these deficits can be difficult to quantify in the laboratory. In the mid-1990s, a task was designed to mimic real life decision-making in the laboratory. This task, known as the Iowa Gambling Task (IGT), is a cognitively complex task used widely in research and clinical studies as a highly sensitive measure of decision-making ability.1-3
In the IGT, a participant is shown four decks of cards and chooses to reveal a card from one deck on each turn. When a card is turned over, the participant will receive some money, but sometimes will also be required to pay a penalty. Two of the decks have higher payoffs, but also have high penalties such that choosing from these decks leads to a net loss in the long term. The other two decks have lower payoffs, but also present smaller penalties, so that choosing from these decks leads to a net gain. Thus, to make an advantageous choice, participants must integrate information about losses and gains over time.
This video demonstrates how to administer the IGT to compare the performance of patients with damage to the ventromedial prefrontal cortex to a group of matched control subjects, revealing the unique contribution of this brain region to decision-making.
1. Participant recruitment
Figure 1: Computer reconstruction of the brain of a patient with VMPFC damage. This patient has bilateral damage to the medial prefrontal cortex, as shown in this 3D reconstruction made from MRI images. Images courtesy of Hanna Damasio.
2. Data collection
Figure 2: Programmed schedule of reward and punishment. This chart is used by the experimenter to determine the reward and punishment for each card turn. The participant is rewarded with the dollar amount in the first column, and is presented with a punishment based on the schedule detailed in the following columns. Each row represents one deck of cards, either A, B, C, or D. For each card turn from that deck, the participant receives the dollar amount in the first cell. Each column represents the card turn from that deck. For example, the first two turns from deck A have no penalty, then the third turn from deck A has a $150 penalty. There are 40 cards in each deck, each represented by a column in the chart. Please click here to view a larger version of this figure.
3. Data analysis
In 100-card draws from four decks, normal controls made more selections from the good decks (C and D), and avoided the bad decks (A and B). In contrast, patients with ventromedial prefrontal cortex (VMPFC) damage made more selections from the bad decks (A and B), and avoided the good decks (C and D; Figure 3). The number of cards selected by controls from decks A and B were significantly less than the number of cards selected from those decks by the patients. In contrast, the number of cards selected by the control population from decks C and D were significantly more than the number selected by patients.
Figure 3: Control subject and patient performance on the Iowa Gambling Task. In one hundred card selections from four decks, normal controls made more selections from the good decks (C and D), and were more apt to avoid the bad decks (A and B). In contrast, patients with ventromedial prefrontal cortex damage made more selections from the bad decks (A and B), and avoided choosing from the good decks (C and D).
These results show that the patients perform differently in this task from healthy controls, in that they tend to draw from high reward/high punishment decks more frequently even though these decks result in long term losses. Examination of the pattern of responses shows that this deficit in performance is stable over time. While controls initially sample from the bad decks, they eventually learn to avoid them. Patients, on the other hand, continue to sample from the bad decks throughout the experiment. Since participants must rely on their ability to estimate which decks are risky and which are profitable over time, patients' performance mimics their real-life inability to made advantageous decisions. This task allows the detection of the impairment in these patients in a laboratory setting, and provides insight into the role of the VMPFC, which appears crucial for incorporating emotional knowledge about decision outcomes into behavior.
This task can serve to assess decision-making deficits in a variety of populations. For example, in addition to patients with damage to the VMPFC, patients with bilateral amygdala damage also show severe decision-making impairments that can be measured by the IGT. Additionally, disadvantageous decision-making characterizes various psychopathological conditions, including substance addiction, pathological gambling, schizophrenia, obsessive-compulsive disorder, anorexia nervosa, attention deficit/hyperactivity disorder, psychopathy, obesity, and many others.
One of the advantages of this task is its ability to distinguish among different cognitive contributions to the complex process of decision-making. For example, we can compare the performance of patients with VPMFC damage to patients with schizophrenia, both of whom show deficits on the task. The tendency of VPMFC patients to choose from the bad decks has been interpreted as a deficit in incorporating information about long-term future consequences into behavior; in these patients, choices are made only on the basis of potential short-term reward. Patients with schizophrenia also choose more frequently from the bad decks than normal controls. However, their distinctive pattern of choices, in which they tend to choose more often from the decks with low frequency, high magnitude losses (decks B and D), reveals a different underlying deficit.4 This pattern of choices suggests that schizophrenic patients are sensitive to the frequency of reward versus punishment, but fail to advantageously take into account the magnitude of the punishment. Thus, the IGT is able to reveal a range of cognitive contributions to decision-making that may be associated with dysfunction in different brain regions.
Przejdź do...
Filmy z tej kolekcji:
Now Playing
Neuropsychology
32.3K Wyświetleń
Neuropsychology
68.2K Wyświetleń
Neuropsychology
27.5K Wyświetleń
Neuropsychology
12.0K Wyświetleń
Neuropsychology
17.7K Wyświetleń
Neuropsychology
30.3K Wyświetleń
Neuropsychology
16.2K Wyświetleń
Neuropsychology
27.4K Wyświetleń
Neuropsychology
19.5K Wyświetleń
Neuropsychology
17.1K Wyświetleń
Neuropsychology
17.3K Wyświetleń
Neuropsychology
6.4K Wyświetleń
Neuropsychology
41.5K Wyświetleń
Neuropsychology
16.7K Wyświetleń
Neuropsychology
10.1K Wyświetleń
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone