Method Article
Here, we present a protocol to measure nasal potential difference in mice. The test quantifies the function of transmembrane ion transporters such as the cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel. It is valuable to evaluate the efficacy of novel therapies for cystic fibrosis.
The nasal potential difference test has been used for almost three decades to assist in the diagnosis of cystic fibrosis (CF). It has proven to be helpful in cases of attenuated, oligo- or mono-symptomatic forms of CF usually diagnosed later in life, and of CF-related disorders such as congenital bilateral absence of vas deferens, idiopathic chronic pancreatitis, allergic bronchopulmonary aspergillosis, and bronchiectasis. In both clinical and preclinical settings, the test has been used as a biomarker to quantify responses to targeted therapeutic strategies for CF. Adapting the test to a mouse is challenging and can entail an associated mortality. This paper describes the adequate depth of anesthesia required to maintain a nasal catheter in situ for continuous perfusion. It lists measures to avoid broncho-aspiration of solutions perfused in the nose. It also describes the animal care at the end of the test, including administration of a combination of antidotes of the anesthetic drugs, leading to rapidly reversing the anesthesia with full recovery of the animals. Representative data obtained from a CF and a wild-type mouse show that the test discriminates between CF and non-CF. Altogether, the protocol described here allows reliable measurements of the functional status of trans-epithelial chloride and sodium transporters in spontaneously breathing mice, as well as multiple tests in the same animal while reducing test-related mortality.
For almost three decades, electrical potential difference (PD) measurements have been used to evaluate the functional status of transmembrane ion transporters expressed at the nasal mucosa, as representative of the distal airways1. As a multistep dynamic test2,3, nasal PD allows functional dissection of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and epithelial sodium channel (ENaC) activity, both localized at the apical membranes of epithelial cells and exerting critical roles in airway surface hydration. The major clinical application of the nasal PD test is to assist in the diagnosis of CF, the most common fatal genetic disorder in Caucasian populations with an average incidence of 1 out of 2,500 live births in European countries. The test has long proved helpful in the diagnosis of attenuated, oligo- or mono-symptomatic forms of CF usually diagnosed later in life, and of CF-related disorders such as congenital bilateral absence of vas deferens, idiopathic chronic pancreatitis, allergic bronchopulmonary aspergillosis, and bronchiectasis4. More recently, clinometric evaluation of the therapeutic modulation of the basic CFTR defect5,6,7,8,9,10,11,12,13,14,15,16 has made use of the nasal PD in clinical trials of new CF therapies. In the preclinical setting, the test has been adapted to the mouse17 to allow investigation of the bioactivity of new CF target therapies18,19,20,21. In mice, the technique is delicate, based on species-related anatomical differences in size of the nasal region between rodents and humans, and mainly on the essential role of sensory inputs from the nasofacial region in rodents. It requires trained and skilled operators, dedicated equipment and supplies.
CF is a multi-systemic disorder of exocrine glands, in which chronic respiratory disease dominates the clinical picture. The disease is caused by mutations in the gene encoding the cyclic adenosine monophosphate (cAMP)-regulated CFTR chloride channel22. To date, more than 2,000 CFTR mutations have been identified23. The most common mutation24,25, found in almost 90% of CF alleles, corresponds to a deletion of the phenylalanine in position 508 of the polypeptide chain of the protein (F508del-CFTR). The CFTR protein is a purely ohmic small conductance chloride channel. There is also considerable evidence that CFTR regulates other transport mechanisms, in particular, ENaC26,27. Defective electrolyte transport, including reduced CFTR-dependent chloride conductance and increased ENaC-dependent sodium conductance, is a hallmark of CF epithelia. The former defect is reflected by a reduced or abolished repolarization in response to both an electrochemical gradient favoring chloride efflux and addition of isoprenaline (a β-adrenergic agonist that increases intracellular cAMP) or forskolin (an adenylate cyclase agonist, not approved for clinical use). The latter defect is reflected by a basal hyperpolarization of the nasal mucosa (a more negative PD) and an increased response to amiloride, a diuretic drug that blocks ENaC28.
CF mouse models have been frequently used in CF research and have been invaluable in dissecting CF pathology. Nowadays, at least fifteen models have been described29, three of which are homozygous for the most clinically relevant F508del mutation30,31,32. One of these three strains30, developed at Erasmus University in Rotterdam, has been used for nearly 20 years in the Université catholique de Louvain (UCL) laboratory. The Cftrtm1Eur model30 has proved to be very useful to study the multiorgan pathophysiology of CF disease and to test the efficacy of new therapeutic strategies18,19,20,21. Numerous problems may occur during or early after (<24 h) the nasal PD test in mice. In this paper, the adequate depth of anesthesia required for keeping a nasal catheter in situ for continuous perfusion, and measures to avoid broncho-aspiration of solutions perfused in the nose are described. The animal care at the end of the test is also described, including administration of a combination of antidotes of anesthetic drugs, leading to rapidly reversing the anesthesia with complete recovery of the animals. Altogether, these procedures allow reliable measurements in spontaneously breathing mice, reduced test-related mortality and repeating the test in the same animal. Representative data obtained from the nasal PD test in a CF and in a wild-type mouse are shown and discussed.
The murine nasal PD test protocol is reported in three sessions: assessment and management before, during, and after the test. In the pre-test assessment and management, the protocol of preparation of the double lumen nasal catheter and of solutions used for continuous nasal perfusion is described in detail. During the assessment and management portions of the test, the experimental setup and the handling of the mouse is minutely dissected. Finally, management of the animal at the end of the test is described to improve full animal recovery.
The studies and procedures were approved by the ethics committee for animal research of the UCL (2017/UCL/MD/015) and in agreement with the European Community regulations for animal use in research (CEE n° 86/609). The investigators are qualified for the animal experimentation following the Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes.
1. Pre-test Assessment and Management
Figure 1: Probes with electrodes and bridges. The figure illustrates the polyethylene tube before (a) and after heating and pulling (b), the tape joining the two capillary parts (c) of the double lumen catheter (d), the silicone tube connectors (e) and the electrodes (f). For picture clarity, the connectors have not been filled with cream mix. Please click here to view a larger version of this figure.
Solution Label | Solution description |
A | Basal buffered salt solution |
B | Chloride-free buffered salt solution |
C | 10-2 M amiloride stock solution |
D | 10-3 M forskolin stock solution |
Table 1: Stock solution for the nasal PD test in mice.
Salt | mM | Molecular weight | g/L |
Sodium chloride (NaCl) | 135 | 58.44 | 7,889 |
Calcium chloride dihydrate (CaCl2.2H2O) | 2.25 | 147 | 0.331 |
Magnesium chloride hexahydrate (MgCl2.6H2O) | 1.2 | 203.3 | 0.244 |
Dipotassium phosphate (K2HPO4) | 2.4 | 174.2 | 0.418 |
Monopotassium phosphate (KH2PO4) | 0.4 | 136.1 | 0.054 |
Table 2: Composition of basal buffered salt solution (stock solution A).
Salt | mM | Molecular weight | g/L |
Sodium gluconate (monosodium salt) | 135 | 218.1 | 29,444 |
Calcium gluconate (anhydrous powder) | 2.2 | 430.4 | 0.947 |
Magnesium sulfate heptahydrate (MgCl2.6H2O) | 1.2 | 246.5 | 0.296 |
Dipotassium phosphate (K2HPO4) | 2.4 | 174.2 | 0.418 |
Monopotassium phosphate (KH2PO4) | 0.4 | 136.1 | 0.054 |
Table 3: Composition of chloride-free buffered solution (stock solution B).
Figure 2: Position of the mouse during perfusion of the nasal mucosa. The figure illustrates the heating pad (a), the voltmeter (b), the reference electrode inserted in the subcutaneous space in a hind limb (c), the proximal (d) and the distal (e) outlets of the peristaltic pump, the pillow (f), and the bed sheet (g). Please click here to view a larger version of this figure.
2. Assessment and Management During the Test
Figure 3: Position of the mouse on the heating pad with the nasal catheter and the filter papers in place. The figure illustrates the tongue put sideways (a), the pipe (b), and the handkerchief (c). Please click here to view a larger version of this figure.
3. Post-test Assessment and Management
In order to illustrate the characteristic ion transport abnormalities in CF, nasal PD measurements were performed following the protocol described above in an F508del-CF mouse and in a wild-type control of the FVB/129 genetic background from the Brussels colony of Cftrtm1Eur mice30. This clinically relevant model, harboring the most common and one of the most severe F508del-CFTR mutation23,24,25, is the best currently available CF mouse model30,31,32.
Representative nasal PD tracings, obtained in a 4-month old female mouse homozygous for the F508del-CF mutation and in an age- and sex-matched wild-type littermate, are shown in Figure 4. During the first two phases of the test, the functional status of ENaC was studied by perfusing solutions A and A1, the latter containing amiloride. The functional status of CFTR (and of alternative chloride transporters in the absence of forskolin) was assessed during the last two phases of the test, when the contribution of ENaC remained blocked by amiloride.
In the F508del-CF mouse, a hyperpolarized baseline value (a more negative PDmax compared to the wild-type mouse value) together with an increased amiloride response were observed; both findings reflect the CFTR-associated ENaC overactivity. More consistently, a drastically reduced repolarization in response to both an electrochemical gradient favorable to chloride efflux and addition of forskolin, named here as total chloride response, was observed. Even though the magnitude of the forskolin response in wild-type mice is small (-3 mV), in CF, the response is usually blunted, consistent with the CFTR loss-of-function.
Figure 4 - Representative nasal PD tracings. Representative nasal PD tracings from a homozygous normal mouse (A) and a mouse homozygous for the F508del-CFTR mutation (B), together with the individual values obtained for the nasal PD parameters (C and D). PDmax: maximal baseline stable value. Amiloride response: difference between the values of nasal PD at the end and at the beginning of perfusion of the nasal mucosa with basal buffered salt solution containing amiloride (solution A1). Chloride-free response: difference between the values of nasal PD at the end and at the beginning of perfusion of the nasal mucosa with chloride-free buffered salt solution plus amiloride (solution B1). Forskolin response: difference between the values of nasal PD at the end and at the beginning of perfusion of the nasal mucosa with chloride-free buffered salt solution plus forskolin and amiloride (solution B2). Total chloride response: sum of the last two parameters obtained under zero-chloride perfusion. Arrows indicate changes of solutions perfused into the nostril. Please click here to view a larger version of this figure.
Antidotes of the anesthetics were applied at the end of the tests, thus reducing the duration of the anesthesia, which can be up to 45 min beyond test completion. As recovery of the animals occurred without after-effects, they were tested again after an interval of seven days, when the same protocol was applied. The same nostril was explored during both tests. Examples of the second test and paired differences of each individual nasal PD parameter between the two tests are shown in Figure 5. As previously reported35, the between-test differences were close to nil, in particular for total chloride response, reflecting the functional status of CFTR-dependent chloride transport, defective in CF.
Figure 5 - Individual values of nasal PD parameters. Values were obtained in a second test (t2) performed in a homozygous normal mouse (A) and a mouse homozygous of the F508del-CFTR mutation (B), together with the paired differences between the second and the first test (t1) for each corresponding parameter. PDmax: maximal baseline stable value. Amiloride response: difference between the values of nasal PD at the end and at the beginning of perfusion of the nasal mucosa with the basal buffered salt solution containing amiloride (solution A1). Chloride-free response: difference between the values of nasal PD at the end and at the beginning of perfusion of the nasal mucosa with the chloride-free buffered salt solution plus amiloride (solution B1). Forskolin response: difference of the values of nasal PD at the end and at the beginning of perfusion of the nasal mucosa with the chloride-free buffered salt solution plus forskolin and amiloride (solution B2). Total chloride response: sum of the last two parameters obtained under zero-chloride perfusion. Please click here to view a larger version of this figure.
Solution Label | Solution description |
A1 | Basal buffered salt solution (A) plus 10-4 M amiloride |
B1 | Chloride-free buffered salt solution (B) plus 10-4 M amiloride |
B2 | Chloride-free buffered salt solution (B) plus 10-4 M amiloride plus 10-5 M forskolin |
Table 4: List of the fresh solutions for the nasal PD test in mice.
The purpose of this paper is to describe an adequate protocol for measuring nasal PD under continuous perfusion of solutions in spontaneously breathing mice for a length of time required for testing the integrity of ion transporters, mainly CFTR and ENaC. All steps of the protocol have been carefully optimized to ensure full animal recovery and good quality and reproducible data. In particular, critical steps are anesthesia assessment and management, and adequate animal position and care during and after the test.
Previous studies showed that plane 2 stage III of anesthetic exposure, which can be achieved by applying the cocktail mixture used here17, is associated with regular breathing and with absence of negative inotropic effect and of blink, pupillary and pedal withdrawal reflexes. At this level of anesthetic depth, the nasal catheter can be kept in situ for continuous perfusion of the nasal cavity and for use as a bridge of the measuring electrode with good tolerance. Also, insertion of the catheter in the subcutaneous space, serving as the bridge of the reference electrode, was not followed by any painful reaction or sign of harmful effect. In rodents, the essential role of sensory input from the nasofacial region in the control of behavior vis-a-vis an external situation, including a threat, makes adequate depth of anesthesia particularly challenging when operating in the nasal cavity. Nebulization instead of continuous nasal perfusion has been applied to perform nasal PD test in some mouse studies33,34. However, this method leads to non-reliable results, owing to repeated removals and reinsertions of the nasal probe. As a matter of fact, owing to non-homogenous distribution of cell types in the mouse nasal mucosa20, repositioning the tip of the probe at the same location in the nostril is critical. Moreover, responses to changes of solutions, in particular chloride-free solutions, rapidly vanish when perfusion is interrupted.
Broncho-aspiration of solutions leading to respiratory arrest is a critical limitation of the procedure and is the major cause of mortality of the test. Several essential measures aim at preventing it, including a dorsal decubitus position of the animal, lightly tilting it with its head downwards, and absorbing excess fluid from the oral and nasal cavities17. A rapid and reversible level of anesthesia with complete recovery of animals is ensured by applying antidotes of anesthetic drugs at the end of the test. The protocol presented here allows reliable measurements in spontaneously breathing mice and repeating the test in the same animal. It impacts on the number of mice required to get statistical significance35 and on complying to the 3R (replace, refine and reduce) rules for animal use in experimental procedures36. In humans as in mice, the lowest between-test variability has been found for total chloride response, suggesting that it as the most reliable nasal PD parameter to detect efficacy of new CF therapeutic strategies. In CF mice, the measurement error of the total chloride response was shown to be less than ±1.7 mV35. In other words, when evaluating the bioactivity of a CFTR-correcting drug in F508del-CF mice, a difference between total chloride response in the absence and in the presence of treatment larger than 2 mV indicates 95% chance of a drug-related improving effect.
Data interpretation of representative tracings illustrates the ability of the nasal PD test to discriminate between CF and wild-type mice18,19,20,21,35 and shows that the F508del-CF Erasmus mouse model30 mimics the human nasal mucosa with respect to the typical clinical ion transport abnormalities. However, in the animal model, a residual chloride conductance is detectable, resulting either from a residual F508del-CFTR function or from a contribution of alternative non-CFTR-dependent chloride channels. Translating results from CF research from preclinical into clinical settings implies dealing with several major differences between the two settings. The mouse CF phenotype displays an attenuated respiratory syndrome. The absence of multiple therapies together with the fact that the mouse model is housed in privileged conditions with hygienic barriers also contribute to the differences37. The protocol described here shows a very low variability35 and it has been adapted to the pig38,39 and the ferret models40. In a previous study, the experimental protocol was modified by including perfusion of the mouse nasal mucosa with an inhibitor of alternative chloride transporters, to explore the possible contribution of non-CFTR-dependent calcium-activated chloride channels18. The test has also been used to study sodium transport in the β-ENaC overexpressing mouse model41, engineered to mimic CF-lung disease42. In the future, further applications of the test could be considered to study other transporters, such as the ATP12A, a CFTR-independent H+-pump protein expressed in human and in pig but absent in mouse airways43. Altogether, the protocol described here allows reliable measurements of the functional status of transepithelial chloride and sodium transporters in spontaneously breathing mice, reduced test-related mortality and multiple tests in the same animal.
The authors have nothing to disclose.
The authors thank Prof. J. Lebacq for critically editing the manuscript. Cftrtm1Eur (homozygous F508del-CFTR (FVB/129) mice were developed by the Erasmus MC, Rotterdam, The Netherlands, with the support of European Economic Community European Coordination Action for Research in Cystic Fibrosis EU FP6 LHHM-CT-2005-018932.
Name | Company | Catalog Number | Comments |
Portex polyethylene tube | Smiths Medical, Hythe, Kent, England CT21 6JL | Portex 800/100/500;2.0mm ID, 3.0 mmOD | to prepare capillary tubes for nasal probe |
Electrode cream | Parker, Fairfield, NJ, USA | Redux cream | to build electrode bridges |
Ag/AgCl electrodes | Biomedical, Clinton Township, MI, USA | JNS BNT131-1,0 | measuring and reference electrodes |
amiloride hydrochloride | Sigma, St Louis, MI, USA | A7410 | to prepare perfusion solutions |
forskolin | Sigma, St Louis, MI, USA | F6886 | to prepare perfusion solutions |
Knick Portamess voltmeter | Elektronisch Meβgeräte, Berlin, Germany | Portavo 904 pH | to measure potential difference |
Paraly SW 112 Software | Elektronisch Meβgeräte, Berlin, Germany | Paraly SW112 software | to capture potential difference data |
midazolam | Mylan, Hoeilaart, Belgium | Dormicum 15mg/3ml | to serve as anaesthetic premedication |
fentanyl | Janssen Cilag, Berchem, Belgium | Fentanyl-Janssen 0.05 mg/ml | to serve as anaesthetic medication |
medetomidine | Orion Pharma, Espoo, Finland | Domitor 1 mg/ml | to serve as anaesthetic medication |
droperidol | Janssen Cilag, Berchem, Belgium | Dehydrobenzperidol 2.5 mg/ml | to serve as anaesthetic medication |
clonidine | Boehringer Ingelheim Pharma KG, Ingelheim am Rhein, Germany | Catapressan 0.15 mg/ml, | to serve as anaesthetic medication |
refernce IV catheter | Becton Dickinson, Sandy, UT, USA | 24 GA x 0.75 IN, BD Insyte-W | to build electrode bridges |
forceps | Fine science Tools, Heidelberg, Germany | Dumont #5, Fine science Tools | to place the nasal catheter |
naloxone | Braun Medical, Brussels, Belgium | Narcan, 0.4 mg/ml | to serve as anaesthetic antagonist |
atipamezole | Zoetis, Bloomberg, Belgium | Antisedan, 5 mg/ml | to serve as a medetomedine specific antidote |
Heating pads | Harvard Apparatus, Holliston, MA, USA | 18,8x37,5 cm; 15,5x15,5 cm | to avoid hypothermia during and after the test |
Peristaltic pump P1 | GE Life Sciences, Uppsala, Sweden | 18111091 | to perfuse solutions in the mouse nose |
cyanoacrylate glue | Loctite, Henkel, Düsseldorf, Germany | super glue 3 | to glue together two capillary tubes for nasal probe |
NaCl | Sigma, St Louis, MI, USA | RES0926S-A7 | Pharma-Grade, USP |
CaCl2.2H2O | Sigma, St Louis, MI, USA | M7304 | Pharma-Grade, USP |
MgCl2.6H2O | Sigma, St Louis, MI, USA | 1551128 | Pharma-Grade, USP |
K2HPO4 | Sigma, St Louis, MI, USA | 1551139 | Pharma-Grade, USP |
Na gluconate | Sigma, St Louis, MI, USA | S2054 | Pharma-Grade, USP |
Ca gluconate | Sigma, St Louis, MI, USA | C8231 | Pharma-Grade, USP |
MgSO4.7H2O | Sigma, St Louis, MI, USA | RES0089M-A7 | Pharma-Grade, USP |
BD needle | Becton Dickinson, Franklin Lakes, USA | BD 26G (0.45x10 mm) | intraperitoneal injection |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone