ソース: アレクサンダー ・ S ・ ラトナーとケビン ラオ李部機械、原子力工学、ペンシルバニアの州立大学、大学公園、PA
この実験の目的は、自己の権利いくつかの外部の力によって側に寝返りを打ったときに能力 - の浮遊船の安定性の現象を示すことです。慎重な船体形状と内部の質量分布の設計により安定する遠洋航海容器低下書き (船体の水中深さ)、船舶操縦性の向上と削減をドラッグします。
この実験では、模型ボートは最初 (別の貨物の荷重を表す) 質量の中心の調整を有効にする変更が、ロール角度の自動追跡。ボートは水のコンテナー内に配置されその重心の高さが異なるさまざまな角度にチップを渡した。リリース、転覆 (転倒) またはボートの動きを揺動は、デジタル カメラとビデオ解析ソフトウェアの追跡されます。最大の安定した結果ロール角と発振周波数は理論値と比較されます。安定計算は、コンピューター支援設計環境で決定されるボートの構造と幾何学的プロパティを使用して実行されます。
浮遊船を支える浮力は当該船舶の水中部分によって転置された液体の重量に等しい。浮力の力はこの水中ボリューム (ボリュームの中心) 重心を通る垂直線に沿って上向きに機能します。この点は、浮力の中心と呼ばれます。浮体構造物の重心が浮力の中心の下の場合、横にローリング (傾斜運動) は右縦方向 (図 1 a) に戻る構造に瞬間を伝えます。重心が浮力の中心の上の構造が安定している (図 1 b) を邪魔なら転覆の原因に可能性があります。ただし、フローティング船の船体を慎重に設計されている場合、ことは安定した、その重心が浮力の中心を超える場合も。ここでは、チップの方向に浮力の中心をシフト変更する湛水容積の形状を引き起こす少し容器を転倒します。(図 1 c) 構造物の質量の中心の外の浮力作用線がある限り立ち直り純瞬間でこの結果します。同様に、船はの (よりメタセンター) 船体の中心線と浮力の作用線の交点がその重心を超える場合は安定するでしょう。いくつかの血管が準安定 - のみいくつかの臨界角まで起き上がり。
また、フローティング船の動的挙動を考慮することが重要です。初期のチップの角度が小さい場合でも、波から強い衝動は準安定限界、過去を回転するボートを引き起こす可能性があります (すなわち、大型小型
)。周波数と振動の振幅も乗客の快適性があります。容器の回転運動は、その重心の瞬間のバランスで予測できます。ここでは、私のzzは、慣性モーメント、重心、 θはロール角、 mは容器の質量とLcm、mcはそのよりメタセンターにその重心からボートのセンターラインに沿った距離。
(1)
図 1: a. 安定した容器ふんばろうの確保、浮力の中心の下の重心。b. 浮力の中心の上の重心と不安定な容器。c. 発生する浮力の中心船体形状の重心 (質量の中心の上よりメタセンター) 犯罪行為します。これは、浮力の中心の上の重心も安定性を得られます。
1. 安定性の最大角度を測定
図 2: マスト、c. わずかな角度 (ステップ 2.1) からリリースされたとき b. ロール角度変化に調節可能な重量と a. モデル ボート 1.4 Hz のピーク周波数を示す (b) のパワー スペクトル密度プロットしてくださいはこれの拡大版を表示するのにはここをクリック図.
2. 発振周波数の測定
3. チップの角の予測
図 3: 容器、容器の c. 物理的に正確なモデルの水中のボリュームを明らかにボートの船体、船体の垂直断面図 b. のモデルで a. 充填します。
4. 振動の周期を予測
総質量 (m, kg) |
質量の中心 (Hcmm) |
浮力の中心 ( ![]() |
慣性モーメント (私zzkg m2) |
0.088 (ステップ 3.1) |
:0.053 (ステップ 3.2) |
0.0078 (ステップ 3.7) |
0.00052 (ステップ 4.2) |
表 1。24 g の重量を持つ模型ボートのプロパティでは、キールの上 13 cm に配置されます。
手順 | 実験値 | 予測値 |
最大の安定したロール角 (1.6、3.8) | 〜 25° | 28.5° |
ロールが自然に周波数 (2.2 4.3) | 1.4 Hz | 1.24 Hz |
表 2。最大の安定したロール角と 24 g 竜骨上 13 cm とボートのローリングの頻度。
この実験は、浮遊船の安定性とどのように、船は比較的高い重心とも真っ直ぐにとどまることができる現象を示した。たとえば、代表的な結果に小さなモデル ボートの重心と (Hcm = 5.3 cm) 水線の上にも (Hウォーター ライン〜 1-2 cm) ~ 25 ° の角度を喫しその直立した位置に戻ることが。実験では、質量の異なる垂直中心で模型ボートの最大の安定角度を測定しました。(ローリング) の発振周波数に及ぼす重心高さも行った。これらの測定の両方は、CAD パッケージの幾何学的パラメーターを使用して得られる理論値と比較しました。これらの結果と手順は、生が設計し、浮体構造を分析するための開始点として使用できます。
安定性のプロパティは、デザインおよび遠洋航海の船の操作のため重要です。浅い草案 (上記の水容器のほとんど) を運航する船は、ドラッグと高められた操縦性を減少しています。大型貨物船で輸送コンテナー貨物容量を増やすとロードとアンロード操作を促進する一番上のデッキ上高積層できます。クルーズ船、浅い草案許可多くの windows および乗客のためのデッキ。安定性は重要な安全のため、非常に安定した船体形状 (高) 収量高速揺動周波数 (Eqn. 2)、不快かもしれないてきぱきと乗客のため。静安定性解析、この実験で示されているように、海洋工学を導くための重要なツール。
スキップ先...
このコレクションのビデオ:
Now Playing
Mechanical Engineering
22.4K 閲覧数
Mechanical Engineering
29.9K 閲覧数
Mechanical Engineering
21.6K 閲覧数
Mechanical Engineering
58.1K 閲覧数
Mechanical Engineering
7.7K 閲覧数
Mechanical Engineering
40.9K 閲覧数
Mechanical Engineering
28.0K 閲覧数
Mechanical Engineering
24.7K 閲覧数
Mechanical Engineering
15.5K 閲覧数
Mechanical Engineering
13.5K 閲覧数
Mechanical Engineering
11.8K 閲覧数
Mechanical Engineering
10.7K 閲覧数
Mechanical Engineering
7.4K 閲覧数
Mechanical Engineering
22.6K 閲覧数
Mechanical Engineering
26.0K 閲覧数
Copyright © 2023 MyJoVE Corporation. All rights reserved