サインイン

浮動のコートの安定性

概要

ソース: アレクサンダー ・ S ・ ラトナーとケビン ラオ李部機械、原子力工学、ペンシルバニアの州立大学、大学公園、PA

この実験の目的は、自己の権利いくつかの外部の力によって側に寝返りを打ったときに能力 - の浮遊船の安定性の現象を示すことです。慎重な船体形状と内部の質量分布の設計により安定する遠洋航海容器低下書き (船体の水中深さ)、船舶操縦性の向上と削減をドラッグします。

この実験では、模型ボートは最初 (別の貨物の荷重を表す) 質量の中心の調整を有効にする変更が、ロール角度の自動追跡。ボートは水のコンテナー内に配置されその重心の高さが異なるさまざまな角度にチップを渡した。リリース、転覆 (転倒) またはボートの動きを揺動は、デジタル カメラとビデオ解析ソフトウェアの追跡されます。最大の安定した結果ロール角と発振周波数は理論値と比較されます。安定計算は、コンピューター支援設計環境で決定されるボートの構造と幾何学的プロパティを使用して実行されます。

原則

浮遊船を支える浮力は当該船舶の水中部分によって転置された液体の重量に等しい。浮力の力はこの水中ボリューム (ボリュームの中心) 重心を通る垂直線に沿って上向きに機能します。この点は、浮力の中心と呼ばれます。浮体構造物の重心が浮力の中心の下の場合、横にローリング (傾斜運動) は縦方向 (図 1 a) に戻る構造に瞬間を伝えます。重心が浮力の中心の上の構造が安定している (図 1 b) を邪魔なら転覆の原因に可能性があります。ただし、フローティング船の船体を慎重に設計されている場合、ことは安定した、その重心が浮力の中心を超える場合も。ここでは、チップの方向に浮力の中心をシフト変更する湛水容積の形状を引き起こす少し容器を転倒します。(図 1 c) 構造物の質量の中心の外の浮力作用線がある限り立ち直り純瞬間でこの結果します。同様に、船はの (よりメタセンター) 船体の中心線と浮力の作用線の交点がその重心を超える場合は安定するでしょう。いくつかの血管が準安定 - のみいくつかの臨界角まで起き上がり。

また、フローティング船の動的挙動を考慮することが重要です。初期のチップの角度が小さい場合でも、波から強い衝動は準安定限界、過去を回転するボートを引き起こす可能性があります (すなわちEquation 1大型小型Equation 2)。周波数と振動の振幅も乗客の快適性があります。容器の回転運動は、その重心の瞬間のバランスで予測できます。ここでは、zzは、慣性モーメント、重心、 θはロール角、 mは容器の質量とLcm、mcはそのよりメタセンターにその重心からボートのセンターラインに沿った距離。

Equation 3(1)

Figure 1

図 1: a. 安定した容器ふんばろうの確保、浮力の中心の下の重心。b. 浮力の中心の上の重心と不安定な容器。c. 発生する浮力の中心船体形状の重心 (質量の中心の上よりメタセンター) 犯罪行為します。これは、浮力の中心の上の重心も安定性を得られます。

手順

1. 安定性の最大角度を測定

  1. 小さな模型ボートを選択します。比較的単純な船体設計セクション 3 と 4 で解析の複雑さを軽減する勧めします。
  2. 軽量の鮮やかな色の垂直のマストをボート (青推奨) に接続します。MATLAB のコードは、イメージの明るい青のピクセルを捜すことによってビデオのマストの位置を追跡します。色違いのマストを使用すると、画像解析コードは調整するでしょう。
  3. ぴったりと重量のための停止として機能するマストにケーブルタイを貼付します。マスト上に重量 (例えば、カップリング ナット) をスライド ストップにかかってください。
  4. 水のより大きい容器にボートを配置し、(図 2 a) を解決することができます。部屋の空気の流れはボートを妨げないようにセットアップを配置します。ボートの長さに沿ってマストを直面しているビデオ カメラをマウントします。白の背景をお勧めします。
  5. 安静時にボートのリファレンス ・ ビデオを収集し、提供の MATLAB 関数 (TrackMast.m) を使用してそれを分析します。ボートが残りにあるとき、それは正しく 0 傾斜を読み取るまで、カメラの向きを調整します。コードの 17 行目にマストを分離するマスク パラメーターを調整する必要があります。
  6. 非常に徐々 にボートを押すことによってチップのビデオを収集、独自落ちるまでのマストの上に横 (転覆)。各テスト中に、可能な限りビデオ フレームにマストをしてください。重量の高さが異なるため、この手順を実行します。各ケースのマストの重量の高さを記録します。
  7. 提供されている MATLAB スクリプトを使用してこれらのビデオを分析します。各ケースの出力角度と時間配列の検査によって最大の安定角度を決定できます。重量高さ対転覆角度のテーブルを完了します。

Figure 2
図 2: マスト、c. わずかな角度 (ステップ 2.1) からリリースされたとき b. ロール角度変化に調節可能な重量と a. モデル ボート 1.4 Hz のピーク周波数を示す (b) のパワー スペクトル密度プロットしてくださいはこれの拡大版を表示するのにはここをクリック図.

2. 発振周波数の測定

  1. 2 つの異なるマスト重量高さと実験をチップの 2 番目のセットを実行します。今回は、少しボートをヒントだけ (~ 10 °) ロッキング船 10-15 秒の動画を収集。
  2. ビデオのトラッキング機能マストを再実行します。関数を呼び出す後評価の出力に次の MATLAB 式: pwelch (シータ、、、、1/(t(2)-t(1)))。これは、ロッキングのボートのパワー スペクトル密度がプロットされます。プライマリのローリングの周波数は、このプロットで (図 2 b c) ピーク値です。

3. チップの角の予測

  1. スケールを使用して、模型ボート、マストや重量などの質量を測定します。
  2. 手順 1.5 で評価マスト重量の各位置では、ストレート エッジのマストとその側にボートをバランスします。質量の中心 (Hcm) として船体の下部からバランス ポイントの高さを記録します。
  3. CAD ソフトウェア パッケージを使用して、重量と船のマストにスケール モデルを作成します。船体では、このモデル (図 3 a) の (固体) で満ちていることを確認します。
  4. 船体下部 (キール) のセンターラインが CAD の原点と一致してマストが垂直 (y) 軸と平行 (最初は) ように、モデルを配置します。
  5. CAD 環境で小さな単位 (例えば、5 °、10 °、15 °...) で、船体の長さに沿ってである z 軸についてボートを回転します。
  6. 各回転の後すぐにカットし、垂直上ボートのすべての残りの下の部分の体積に等しい水の密度で割った質量合計船ようなレベル (m / ρw, ρw = 1000 kg m-3)。その角度 (図 3 b) で浮いているとき、これは水行の下ボートの部分を表します。
  7. CAD ソフトウェアで「質量プロパティ」機能を使用して、残りの船体の重心の x 位置を評価します。ここでは、起源であるべきそのボールの最低の縁に沿って (キール) と x 軸が水平方向にポイントする必要があります。これは浮力 (xb); の中心を表す浮力の力はこの点を通じて機能します。Θxcmのテーブルを準備します。
  8. 各最大安定した角度 (θ) ステップ 1.6 で識別、ボートの重量のモーメント アームを比較 (Equation 4) と復元の浮揚性力のモーメント アーム (Equation 5)。ステップ 3.7 で取得した値の間を補間する必要があります。これらの約バランスか。

Figure 3
図 3: 容器、容器の c. 物理的に正確なモデルの水中のボリュームを明らかにボートの船体、船体の垂直断面図 b. のモデルで a. 充填します

4. 振動の周期を予測

  1. ステップ 2.1 のケースに対応する重量の位置にボートの第 2 CAD モデルを生成します。今回はモデル (すなわち、満たされたのではなく、図 3 c) 外皮の実際の厚みです。実際の値を持つ材料の密度に一致します。
  2. CAD ソフトウェア「質量プロパティ」機能を使用すると、その重心重量ハイツのロール軸 (zz) に沿ってボートの慣性モーメントを評価します。
  3. 上記の手順、およびxからの結果を使用して-浮力の中心の位置は測定時Equation 6(ステップ 3.7) 評価理論発振周波数。
    Equation 7(2)
  4. 測定した発振周波数とステップ 4.3 から理論的結果を比較します。これらの値は合理的に同意しますか。

結果

総質量
(m, kg)
質量の中心
(Hcmm)
浮力の中心
(
Equation 8、m)
慣性モーメント
(zzkg m2)
0.088
(ステップ 3.1)
:0.053
(ステップ 3.2)
0.0078
(ステップ 3.7)
0.00052
(ステップ 4.2)

表 1。24 g の重量を持つ模型ボートのプロパティでは、キールの上 13 cm に配置されます。

手順 実験値 予測値
最大の安定したロール角 (1.6、3.8) 〜 25° 28.5°
ロールが自然に周波数 (2.2 4.3) 1.4 Hz 1.24 Hz

表 2。最大の安定したロール角と 24 g 竜骨上 13 cm とボートのローリングの頻度。

申請書と概要

この実験は、浮遊船の安定性とどのように、船は比較的高い重心とも真っ直ぐにとどまることができる現象を示した。たとえば、代表的な結果に小さなモデル ボートの重心と (Hcm = 5.3 cm) 水線の上にも (Hウォーター ライン〜 1-2 cm) ~ 25 ° の角度を喫しその直立した位置に戻ることが。実験では、質量の異なる垂直中心で模型ボートの最大の安定角度を測定しました。(ローリング) の発振周波数に及ぼす重心高さも行った。これらの測定の両方は、CAD パッケージの幾何学的パラメーターを使用して得られる理論値と比較しました。これらの結果と手順は、生が設計し、浮体構造を分析するための開始点として使用できます。

安定性のプロパティは、デザインおよび遠洋航海の船の操作のため重要です。浅い草案 (上記の水容器のほとんど) を運航する船は、ドラッグと高められた操縦性を減少しています。大型貨物船で輸送コンテナー貨物容量を増やすとロードとアンロード操作を促進する一番上のデッキ上高積層できます。クルーズ船、浅い草案許可多くの windows および乗客のためのデッキ。安定性は重要な安全のため、非常に安定した船体形状 (高Equation 9) 収量高速揺動周波数 (Eqn. 2)、不快かもしれないてきぱきと乗客のため。静安定性解析、この実験で示されているように、海洋工学を導くための重要なツール。

タグ

Floating VesselsStabilityPerformance MetricsStaying UprightPositive BuoyancyCapsized VesselSafety And ComfortCrew And CargoOrientationVessel StabilityTradeoffDesign OptimizationFuel EfficiencyManeuverabilityShape And Weight DistributionExperimental TestingComputer aided Design SoftwareBuoyancyGravityObject Orientation

スキップ先...

0:07

Overview

1:30

Principles of the Stability of Floating Vessels

4:49

Performing the Experiment

8:07

Numerical Approach to Design

11:33

Applications

12:37

Summary

このコレクションのビデオ:

article

Now Playing

浮動のコートの安定性

Mechanical Engineering

22.4K 閲覧数

article

浮力と浸漬のボディ ドラッグ

Mechanical Engineering

29.9K 閲覧数

article

推進力と推力

Mechanical Engineering

21.6K 閲覧数

article

配管ネットワークと圧力損失

Mechanical Engineering

58.1K 閲覧数

article

焼入れと沸騰

Mechanical Engineering

7.7K 閲覧数

article

油圧ジャンプ

Mechanical Engineering

40.9K 閲覧数

article

熱交換器の解析

Mechanical Engineering

28.0K 閲覧数

article

冷凍入門

Mechanical Engineering

24.7K 閲覧数

article

熱線

Mechanical Engineering

15.5K 閲覧数

article

乱流を測定

Mechanical Engineering

13.5K 閲覧数

article

鈍頭物体まわりの流れの可視化

Mechanical Engineering

11.8K 閲覧数

article

傾斜平板に衝突する噴流

Mechanical Engineering

10.7K 閲覧数

article

省エネルギー システムの分析方法

Mechanical Engineering

7.4K 閲覧数

article

質量保存則と流量率測定

Mechanical Engineering

22.6K 閲覧数

article

制御体積法による平板の衝突力の測定

Mechanical Engineering

26.0K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved