Method Article
このプロトコルは、ヤモリにインスパイアされたソフトロボットのクライミング性能の製造、制御、評価のために実行されるステップの詳細なリストを提供します。
このプロトコルは、最大84°の傾斜平らな表面を登ることができるソフトロボットの製造、制御、および性能評価のための方法を提示します。製造方法は一般的に高速ニューネット曲げアクチュエーターに有効であり、したがって、アクチュエータ製造の分野への新規参入者にとって興味深いかもしれません。ロボットの制御は、任意の圧力を提供することができ、購入したコンポーネント、レーザーカッター、およびはんだ付け鉄を使用してのみ構築することができる空気圧制御ボックスによって達成される。ロボットの歩行性能のために、圧力角の口径測定は重要な役割を果たす。従って、圧力角キャリブレーションのための半自動方式が提示される。高い傾斜(>70°)で、ロボットはもはや確実に歩く平面に自分自身を固定することはできません。したがって、歩行パターンは、足が歩行平面上に固定されるように修正されます。
人間と機械の相互作用は絶えず近づいています。企業や家庭のロボット密度の増大は、ロボット技術に新たな課題をもたらします。多くの場合、危険は分離方法によって除外されますが、多くの地域、特に家庭では、これは満足のいく解決策ではありません。ソフトロボティクスは、柔らかい材料や構造の特性を利用して、生物のように振る舞う新しいタイプの機械を開発することでこの問題に取り組んでいます。2ほとんどのソフトロボットは、2つの異なるタイプに分類することができます: 握りと操作のために設計された移動式ロボットとロボット3.ソフト移動ロボットの場合、典型的な移動原理は、クロール、ウォーキング、ランニング、ジャンプ、フライング、水泳4です。ソフトロボットのためのアプリケーションのもう一つの興味深い分野は、登山です - 移動と接着の組み合わせ5.ソフトマシンは非常に堅牢で、柔らかさのために周囲に損傷を与えることはできません。この特性は、彼らが簡単に落下を生き残ることができるので、登山のためにこのロボットクラスを先取りします。その結果、文献は,、6、7、87を登ることができるソフト6ロボットのいくつかの例を提供しています。8
このプロトコルの目的は、ヤモリに触発されたクライミングソフトロボット9の性能を製造、制御、評価する方法を提供することです。その設計はエラストマーから成っている速いニューネット柔らかい曲がるアクチュエーター10 の使用に基づいている。しかし、別のソフトアクチュエータの設計や材料も使用できます。文献は、ソフトアクチュエータ11 と適切な材料12の異なるデザインの広い範囲を提供しています。提示された製造方法は既存の方法13 と類似しているが、少なくともソフトクライミングロボット9の場合には、再現性と堅牢性の向上をもたらすいくつかの修正が含まれている。この方法は、一般的に高速ニューネット曲げアクチュエータに有効であり、したがって、アクチュエータ製造の分野への新規参入者にとって興味深いかもしれません。
空気圧作動ソフトロボットを制御するために、文献は異なるソリューションを提供します。これは、低コストで簡単に再現できる制御ボード13 から、強力だがより複雑なボード14まで、特別なツールなしでは再構築できません。ここでは、レーザーカッターとはんだ付けアイロンのみを使用して空気圧制御ボックスを構築するための簡単な説明が提供されています。制御箱はあらゆる圧力の供給を可能にし、ロボティクスの適用のために特に重要である、リアルタイムの感覚フィードバックを提供する。ただし、他の多くのアプリケーションにも使用できます。
1. 金型の印刷
2. エラストマーの準備
3. 上方部(ベース部品)の製造
4. 下部(下部)の製造
5. ベース部と底部の結合
6. すべての手足の結合
7. 供給管の入口の取付け
8. コントロールボックスの作成
9. 組み込み測定システムを備えたテストベンチの構築
10. システム全体の設定
11. コントロールボックスの実行
12. ロボットのキャリブレーション
13. 歩行パターンの作成
14. 登山実験を実施する
15. 実験の評価
提示されたプロトコルは、ソフトクライミングロボット、普遍的に適用可能なコントロールボックス、および登る能力を高め、同時に消費エネルギーを減少させるロボットのまっすぐな動きのための制御戦略の3つのことをもたらします。セクション8で説明されている制御ボックスは、最大6チャンネル(8に拡張可能)、さらに4つのチャネルで真空の供給(必要に応じて拡張可能)で、任意の所望の圧力レベルを連続的に供給することができます。「ユーザー・インターフェース・ユニット」を使用すると、ユーザーは実行時にコントロールボックスを簡単に操作でき、モニターへのインターフェースにより、測定されたデータを直接表示してcsvファイルとして保存できます。コントロール ボックスのパターン参照モードは、定義済みのパターンをループする直感的なインターフェイスをユーザーに提供します。これは、このプロトコルのようにロボットの歩行パターン、またはアクチュエータ疲労試験、または周期的なローディングを必要とする他のアプリケーションに使用することができます。 図 1 は、コントロールボックスと測定システムに組み立てられたすべてのハードウェア コンポーネントと、それらの接続方法を示しています。
ロボットの直線運動の歩行パターンは、角参照8で定式化されます。ロボットを操作するには、これらの角度参照を圧力参照に変換する必要があります。このプロトコルで使用される制御戦略は、あらかじめ角度圧力調整に基づいています。キャリブレーションの各方法は、異なるアルファ圧曲線をもたらします。したがって、キャリブレーション手順を可能な限り実際の動作条件に適合させる必要があります。歩行平面の傾斜角度を変更すると、運転条件も変わります。したがって、角度圧曲線は各傾斜に対して再較正されなければならない。図2Aは、変化しないキャリブレーションと再較正された角度圧曲線を有する様々な傾斜に対するロボットの速度を示す。実験は、再較正の有効性を明確に示しています。再較正されたロボットは、より速い方法であるだけでなく、図2Bに示すように、より少ないエネルギー9を消費しながら、より急な傾斜(76°の代わりに84°)を登ることもできます。図3では、ロボットの動きの一連の写真が48°の傾きのために示されています。図3Bに示す再較正によるクライミング性能は、同じ時間間隔内の位置のシフトがほぼ2倍大きいため、図3Aに示す未変更のキャリブレーションよりもはるかに優れているということを明確に示しています。このロボットは他のソフトロボットと比べて非常に速く動くことができる。Qinら7は様々なソフトロボットの進速度を要約する。ペイロードがなく、水平面では、このプロトコルで説明するロボットは、Ref.7の最速ロボットよりも体長に対して5倍速い。
図 1: コントロール ボックスに組み込まれたハードウェア コンポーネントの図。この中は 、i-thチャネルの圧力基準i、i番目の比例弁の制御信号、i
角参照を含むベクトル、角度測定値を含むベクトルをα、位置測定値を含むベクトルをx、直動ソレノイド弁にƒ対する制御信号を含むベクトル、すなわち、足の固定状態を示す。UIは「ユーザーインターフェースユニット」の略であり、BBBはBeagleBone Blackの略語であり、すなわち、コントロールボックスで使用される単一ボードコンピュータ、およびRPiはラズベリーパイ、すなわち測定システムで使用されるシングルボードコンピュータの略である。この図の大きなバージョンを表示するには、ここをクリックしてください。
図2:クライミング性能の評価破線のカーブは、再較正された圧力参照の一定およびソリッド曲線の値を示します。(A) 様々な傾斜角に対するロボットの前進速度。(B)様々な傾斜角のエネルギー消費。この図はRef.9から適応されます。 この図の大きなバージョンを表示するには、ここをクリックしてください。
図3:48°の傾きでロボットの動きの一連の写真。各写真の間の経過時間は、1.2 s. (A) 一定の圧力参照のモーションと(B) 再整合された圧力参照のモーションです。 この図の大きなバージョンを表示するには、ここをクリックしてください。
補足図1:エラストマーの調製こちらをダウンロードしてください。
補助図2:鋳造前後の排気時の気泡形成の比較(A)エラストマーの避難は鋳造前にのみ行われる。閉じ込められた気泡は所定の位置にとどまりますが、バンプの領域に多く存在し、アクチュエータの機能に大きな影響を与えません。(B)退避は鋳造の前後に行う。閉じ込められた気泡が上昇するが、支柱の上側に再び立ち往生し、機能に影響を与えることができるアクチュエータに穴を作成します。こちらをダウンロードしてください。
補助図 3: 正常な硬化鋳造物と失敗した鋳造の例 上の行には、成功例と下段の失敗例が表示されます。欠陥がはっきりと認識されない場合は、緑色の円でマークされます。 こちらをダウンロードしてください。
補助図4:ベース部品の製造こちらをダウンロードしてください。
補助図5:ボトム部品の製造スキーム チューブ(後で吸引カップの供給管として使用される)は鋳造前に型にクランプされます。次いで、金型を液体エラストマーで満たします。 こちらをダウンロードしてください。
補助図6:ベース部と底部の接合こちらをダウンロードしてください。
補助図7:柔らかい曲げアクチュエータのラミネーション鋳造。 液体エラストマーは、赤、淡赤色の硬化エラストマー、および歪み制限層と黒の金型で表されます。(A)混合エラストマーは、ベース部用と底部用の2つの別々の金型に注がれます。それによって、下の部分は半分しか満たされていない。ひずみ制限層(供給管)を底部のモールドに挿入します。(B)部品が硬化し、ベース部がデボルドされる。(C)底部モールドは液体エラストマーで上部に充填される。(D) ベース部がこのモールドに浸漬されます。(E)2つの部分は一緒に治ります。(F)アクチュエータがデボルドされる。この図は Ref.13に基づいています。 こちらをダウンロードしてください。
補助図8:全ての手足の結合 (A) 流体エラストマーで結合される表面を覆う。(B) アセンブリ全体のレンダリング ビュー。 こちらをダウンロードしてください。
補足図9:供給管の入口を取り付ける。こちらをダウンロードしてください。
補足図10:コントロールボックスの写真。 (A) ユーザーがロボットと対話できるようにするユーザーインターフェイスユニットの正面図。(B) バルブユニットの詳細ビュー。(C) コントロールボックス全体のトップビュー。 こちらをダウンロードしてください。
補足図 11: ユーザー・インターフェース・ユニットの回路図こちらをダウンロードしてください。
補足図12:バルブユニットの回路図こちらをダウンロードしてください。
補足図13:制御ボックス全体の回路図を簡略化した図。こちらをダウンロードしてください。
補足図 14: コントロールボックスに埋め込まれた単一ボード コンピュータの使用済みピンの図。 (A) ユーザーとの通信に必要なボードの使用ピン。(B)ロボット制御に必要なボードの使用ピン。 こちらをダウンロードしてください。
補足図 15: 計測システムが設置された歩行平面のレンダリングビュー。こちらをダウンロードしてください。
補助図16:リフティング効果の可視化。 6 mmヘッドのピン針は胴体の両端に挿入されます。これは歩行の間の摩擦を最小にし、吸引のコップが歩く平面と完全に接触する原因となる。 こちらをダウンロードしてください。
補助図17:視覚マーカーの組み立て。 マーカーはピン針を使用してロボットに取り付けられます。マーカー 0 は、左前の足、胴体の前部にマーカー 1、右前足のマーカー 2、左後方のマーカー 3、胴体の後方のマーカー 4、右後方の足にマーカー 5 を取り付けます。マーカー4の組み立てでは、3本の針が使用されていますこの図はRef.9から適応しています。 こちらをダウンロードしてください。
補助図 18: コントロールボックスのボタンの凡例こちらをダウンロードしてください。
図 19:グラフィカル ユーザー インターフェイスのボタンの凡例こちらをダウンロードしてください。
補助図20:ロボットの直線運動のための歩行パターン。 固定フィートは塗りつぶされた円で示され、固定されていない足は塗りつぶされていない円で示されます。(A) 低および中程度の傾斜角度(<70°)の歩行パターン。(B)高い傾斜のための歩行パターン(>70°)。真空は、赤と黒の満たされた足に適用されます。黒で塗りつぶされた足は地面に固定されていますが、赤い足は必ずしもそうである必要はありません。固定を確保するために、固定する足を一度前後に振る。この図はRef.9から適応されます。 こちらをダウンロードしてください。
補足図21:ソフトクライミングロボットの展開図を表示しました。 鳩尾は胴体の端の足およびそれに対応するキーウェイに置かれている。これにより、結合プロセスの精度が大幅に向上します。この図はRef.9から適応されます。 こちらをダウンロードしてください。
補足図22:圧力角曲線の決定のための異なる較正手順。 各部分図は、質的圧力コースと対応するロボットポーズのスナップショットを示しています。(A)各アクチュエータは、0 bar から 1 bar まで連続して膨張し、他の全てのアクチュエータは圧力を受けません。(B) 圧力高原は、1 つのアクチュエータに 3 s を適用します。その後、2 sのために完全に膨張します。次のラウンドでは、高原が1バーに達するまで圧力高原のレベルが増分して増加します。これはアクチュエータごとに個別に行われます。(C)モード2と同様の手順が、ここで、同じプラトーがアクチュエータ(0,3,4)、アクチュエータ(1,2,5)に同時に適用される。(D) モード 3 と同じ手順ですが、アクチュエータ (0,3) のプラタスは 0 バー (前と同様) から始まり、1 バーではなく 1.2 バーで終了します。基本的に、アクチュエータ(0,3)の増分は若干増加し、他のアクチュエータの増分は同じままです。 こちらをダウンロードしてください。
補足図23:異なるキャリブレーション手順のための角度圧曲線。こちらをダウンロードしてください。
補助アニメーション 1: ロボットのまっすぐな歩行のアニメーション。このファイルをダウンロードするには、ここをクリックしてください。
補助アニメーション2:ロボットのクライミング歩行のアニメーション。このファイルをダウンロードするには、ここをクリックしてください。
補足ファイル 1: シングルボード コンピュータを構成する手順。このファイルをダウンロードするには、ここをクリックしてください。
補足ファイル 2: ビジュアルマーカーの印刷テンプレート。このファイルをダウンロードするには、ここをクリックしてください。
補足データ 1: CAD ファイル。 このzip圧縮フォルダには、金型を印刷するための*.stlファイル、コントロールボックスのハウジングを切断するレーザーカット用の*.dxfファイル、測定システムに使用されるクランプを印刷するための*.stlファイル、および測定システムのフレームを切断するレーザー用の*.dxfファイルが含まれています。 このファイルをダウンロードするには、ここをクリックしてください。
補足データ 2: シングルボード コンピュータで実行するコード。 このzip圧縮フォルダには、「ユーザーインターフェースユニット」に使用されるボード上で実行されているプログラムとそのソース、ロボット制御に使用されるボード、および画像処理に使用されるボードが含まれています。3 つのボードすべてに完全なフォルダーをアップロードします。 このファイルをダウンロードするには、ここをクリックしてください。
補足データ3:例示的測定データ。 この zip 圧縮フォルダーには、キャリブレーション手順中に生成される *.csv ファイルが 2 つ含まれています。 このファイルをダウンロードするには、ここをクリックしてください。
補足データ 4: 校正スクリプト。 この zip 圧縮フォルダーには、キャリブレーション手順中に生成された測定データを評価するための python スクリプトとそのソースが含まれています。 このファイルをダウンロードするには、ここをクリックしてください。
補足データ 5: 評価スクリプト。 この zip 圧縮フォルダーには、2 つの Python スクリプトと、クライミング実験中に生成された測定データを評価するためのソースが含まれています。また、 図2の生成に用いたすべての測定データも含まれています。 このファイルをダウンロードするには、ここをクリックしてください。
提示されたプロトコルは、製造、制御、キャリブレーション、および性能評価を含むRef.9からのクライミングソフトロボットに関連する多くの異なる側面を含みます。以下では、プロトコルに由来する長所と短所について、上記の側面に従って議論され、構造化される。
提示された製造方法は、既存の文献10,13,13に強く基づいている。大きな違いはアクチュエータの設計です。個々の手足を結合するために、補助図 21に示すように、鳩尾ガイドが適切なポイントに挿入されます。これは、ロボット8の以前の設計と比較して、四肢間のはるかに正確で堅牢な接続をもたらします。さらに、供給管はアクチュエーターの下部に埋め込まれている。この統合設計により、吸引カップに真空を供給できると同時に、ボトムレイヤが伸縮性をなくし、アクチュエータの性能が大幅に向上します。文献に記載されている手順との別の違いは、混合エラストマーが(混合直後に)一度だけ避難することである。多くのソースは、エラストマーを2回避難することをお勧めします:混合後に1回、金型に充填された後に1回。空気が非常に小さな空間に閉じ込められたままである可能性があります。真空チャンバーでは、この空気が膨張し、最良のケースでは表面に上昇します。しかし、多くの場合、これらの気泡は途中で立ち往生し、完成した鋳造に不快な穴を作り出します。ここでは、より重要なものについて決定する必要があります:ベース部の底面に完全な輪郭または非機能的アクチュエータを製造するリスクができるだけ少ない(cf.補助図2)。このプロトコルでは、2 回目の避難は行われません。提示された手順では、下部部分の高さは手動で充填される際に変化する可能性があり、また、ベース部品とは異なり、硬化後に均一な高さに切断する可能性はありません。底部の高さができるだけ均一になるように、底部の金型を充填する際にシリンジを使用し、流し込んだ体積を測定することをお勧めします。しかしながら、混合後の経過時間に応じて、エラストマーの流動特性は大きく変化する。そのため、常に新鮮な混合エラストマーを使用することをお勧めします。ベースとアクチュエータの下部を結合するには、プロセスの不確実性が最も大きくて済みます。エラストマー浴場が高すぎる場合、チャンバー間の空気チャネルも同様に覆われる可能性が高くなります。その後、アクチュエータはもはや使用できません。エラストマー浴が低すぎると、シールリップが全周で覆われず、アクチュエータが漏れる可能性があります。したがって、エラストマー浴を正しく投与するには、ある程度の練習が必要です。一般的に接合に重要なのは、無脂肪結合面です。接合面が汚染され過ぎると、完成したアクチュエータが剥離する可能性があります。したがって、パーツが結合されないサーフェスにのみ接触されるようにすることが重要です。製造方法の大きな制限は、実現する個数です。単一のアクチュエータの生産は、合計で少なくとも2時間かかります。複数の金型を並行して扱うことは可能ですが、時間の制約により4つ以上は推奨されません。エラストマーのポットライフは短すぎて、さらに多くの金型を充填することはできません。さらに、3D プリント金型は、非常に変形または破壊される前に、限られた数の生産サイクル(約10~20)にしか耐えられない。さらなる制限は、既に議論されているプロセスの不確実性です。ほとんどすべてのプロセスステップは手動で行われるので、各アクチュエータは少し異なります。これは、建設中に同一であるが、2つの非常に異なる動作を示す2つのロボットにつながる可能性があります。
制御ボックスを使用して、ロボットを制御するメソッドが提供されます。しかし、空気圧システムごとに、スクリプト"Code/arduino_p_ctr.ino"の制御ゲインを個別に決定する必要があります。これはプロトコルではカバーされていません。しかし、コントロールボックスの「圧力基準モード」は、ロボットの遊び心のある処理を可能にし、コントローラのチューニングを複数のスクリプトを書かずに行うことができます。コントロールボックスのもう一つの制限は、材料コストが合計で約7000米ドルであるため、そのコストです。文献11 は、約900米ドルの費用がかかり、いくつかのアップグレードでロボットを操作するために使用することができるコントロールボックスのための建物の指示を提供しています。
個々のアクチュエータのキャリブレーションに重要なのは、キャリブレーション手順の選択です。 補足図22 は、4つの異なる手順に対する経時の圧力基準の定性的な経過を示し、 補足図23 は結果として得られる角度圧力曲線を示す。後者に見られるように、較正の各方法は異なる角度圧曲線をもたらす。これは、圧力と角度の関係がアクチュエータに作用する荷重に大きく依存していることを示しています。したがって、キャリブレーション手順は、可能な限り最良の実際の荷重ケースを反映する必要があります。したがって、キャリブレーション手順を可能な限り実際の動作条件に適合させる必要があります。最良の歩行性能は、較正手順4で得られる。しかし、 図3Bに示すように、シリーズの後続のポーズは完全に対称的ではなく、キャリブレーションの改善の可能性を示す指標です。
測定システムにとって重要なのは、セクション10における視覚マーカー15 の組立である。(チューブが干渉するため)目的のポイントに直接取り付けることができないので、測定された点は人工的にシフトする必要があります。このオフセットベクトル(カメラのピクセル座標)を決定する際には、特別な注意が必要です。それ以外の場合、測定全体に大きな系統誤差が発生します。また、タグが時間とともに置き換われないようにする必要もあります。このような場合、例えば、ロボットのダウンにより、対応するタグをまったく同じ場所に再マウントする必要があります。いずれの場合も、測定システムが信頼性の高い出力を生成するかどうかを定期的にチェックする必要があります。
実験の制限要因は、足の固定です。さらに急な傾斜を登ることができるように、固定機構を再考する必要があります。現在、ロボットは積極的に歩く平面に対して足を押すのができず、高い傾斜のために、重力によって引き起こされる正常な力は、信頼性の高い吸引を確実にするために歩く飛行機に十分近い吸引カップを持って来るには小さすぎます。
提示された製造方法はあらゆる流動エラストマーアクチュエーターに移すことができるので、将来の適用のために興味深いかもしれない。提示された制御箱は彼らが速い感覚フィードバックを要求するようにロボットプラットホームを含む6つの個々のアクチュエーター(8まで拡張可能)から成るあらゆる空気圧システムの制御を可能にする。したがって、将来のロボットのテストと制御のための普遍的なプラットフォームとして使用することができます。最後に、提示された較正方法は、原則として、任意のフィードフォワード制御空気圧システムにすることができる。要約すると、提示されたすべてのメソッドは、議論された範囲内で普遍的です。
著者らは、競合する財政的利益はないと宣言している。
著者たちは、フィン・クヌーセン、アラヴィンダ・バリ、ジェイコブ・ムチンスキーに有益な議論とインスピレーションを感謝したいと考えています。
Name | Company | Catalog Number | Comments |
3D Printer | Formlabs | Form 2 | |
acrylic glass plate with two holes | - | for casting, see Supplementary | |
acrylic glass back panel | - | see Supplementary | |
acrylic glass bottom panel | - | see Supplementary | |
acrylic glass front panel | - | see Supplementary | |
acrylic glass side panel | - | see Supplementary | |
acrylic glass top panel | - | see Supplementary | |
Arduino Nano | Arduino | A000005 | |
Allan Key 1mm | available in every workshop | ||
BeagleBone Black | beagleboard | BBB01-SC-505 | |
butterfly cannula | B. Braun Melsungen AG | 5039573 | |
clamp 1 for measurement system | - | see Supplementary | |
Clamp 2 for measurement system | - | see Supplementary | |
cutter knife | available in every workshop | ||
direct acting solenoid valves | Norgren | EXCEL22 DM/49/MDZ83J/T4 | |
elastomer | Wacker Chemie | ELASTOSIL M4601 | |
frame measurement system part 1 | - | see Supplementary | |
frame measurement system part 2 | - | see Supplementary | |
laser cutter | Trotec | SP500 | |
LED | RND COMPONENTS | RND 210-00013 | |
LCD | JOY-IT | SBC-LCD16X2 | |
mould bottom part leg | - | see Supplementary | |
mould bottom part torso 1 | - | see Supplementary | |
mould bottom part torso 2 | - | see Supplementary | |
mould leg 1 | - | see Supplementary | |
mould leg 2 | - | see Supplementary | |
mould torso 1 | - | see Supplementary | |
mould torso 2 | - | see Supplementary | |
oven | Binder | ED 115 | |
Plastic Cup | available in every supermarket | ||
Plastic syringe | available in every pharmacy | ||
poster panel | Net-xpress.de (distributor) | 10620232 | as walking plane |
Potentiometer | VISHAY | P16NM103MAB15 | |
Power Supply | Pulse Dimension | CPS20.241-C1 | |
pressure sensor | Honeywell | SSCDANN150PG2A5 | |
Pressure Source | EINHELL | 4020600 | |
proportional valves | Festo | MPYE-5-1/8-LF-010-B | 6x |
Raspberry Pi | RASPBERRY PI | RASPBERRY PI 3B+ | |
Raspberry Pi Cam | RASPBERRY PI | RASPBERRY PI CAMERA V2.1 | |
resin | formlabs | grey resin 1l | |
screw clamps | VELLEMAN | 3935-12 | |
silicon tube 2mm | Festo | PUN-H-2X0,4-NT | for connecting robot to control box |
silicone Tube 2.5mm | Schlauch24 | n/a | for supply tube inlet (https://www.ebay.de/itm/281761715815) |
Switches | MIYAMA | MS 165 | |
ultrasonic bath | RND LAB | 605-00034 | |
UV chamber | formlabs | Form Cure | |
Vacuum chamber + pump | COPALTEC | PURE PERFEKTION | |
weight scale | KERN-SOHN | PCB 2500-2 | min. resolution 1g |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved