Method Article
我々は、単一の組織サンプル内に含まれる長い樹状ツリーとニューロンを可視化するために、厚い脳切片にゴルジコックス染色法を使用するためのプロトコルを提示します。このプロトコルの二つの変異体はまた、クレシルバイオレットの対比、および長期保存のために未処理の脳の凍結を伴うが提示されています。
ニューロン染色のゴルジ - コックス方法は、組織学的脳サンプル内のニューロンの形態の我々の理解を進めるために以上の200年のために採用されています。それは完全に単一のセクション内に含まれる染色されたニューロンを同定する確率を高めるために、可能な最大の厚さで脳切片を調製するために実用的な観点から好ましいが、このアプローチは高いの作動距離によって技術的な観点から制限されています-magnification顕微鏡対物レンズ。ここでは500μmの厚さで切断されているマウスの脳切片にゴルジ - コックス法を用いた神経細胞を染色するために、高解像度30X 1.05 NAシリコーンを装着した正立顕微鏡を使用して、これらのセクションの深さ全体のニューロンを可視化するために、プロトコルを報告します800μmの作動距離を持つ油浸対物レンズ。また、表面を対比染色するために使用することができるこのプロトコルの2つの有用な変種を報告しますクレシルバイオレットニッスル染色で脳切片をマウントし、または処理を区画し、最終の前に長期保存のために全脳を凍結します。主プロトコルとその2つの変異体は、完全なニューロンの樹状ツリーと樹状突起棘を確実に可視化および定量化することができる全体ステンド厚い脳切片を、生成します。
組織サンプル内の個々の神経細胞の可視化は、脳の我々の理解を進めて大きくしており、それは、内因性疾患または外因性の環境要因によって影響を受ける可能性がどのようにニューロンの形態学的特性のその場での分析を可能にします。ゴルジ - コックスの染色方法は、脳内の神経細胞のランダムなサンプルを染色の費用対効果の高い、比較的簡単な手段です。第ゴルジ1によって開発され、1800年代コックス2によって修飾、研究者らはさらに、樹状ツリー形態および棘密度3,4の両方を可視化し、定量化するために使用することができる透明な、十分に染色されたニューロンを産生するために長年にわたってこの技術を洗練しています5、6、7、8、9。
脳切片中の染色されたニューロンの可視化のための主要な技術的な考慮事項は、使用可能な高倍率/高解像度の顕微鏡対物レンズの作動距離によって制限される最大スライス厚、です。 60で共通の油浸対物レンズ - 100Xは、優れた分解能を提供する範囲であるが、一般的には200μmよりも大きくない彼らの作動距離によって制限されています。 200μmの範囲で切断脳切片は、大脳皮質10の浅い層で例示錐体ニューロン、11、12、のCA1領域における錐体ニューロンのために、このスライスの厚さ内に収容することができる特定のニューロンタイプを視覚化するのに十分であってもよいです海馬13、14、及び海馬15の歯状回における顆粒細胞。比較的長いとニューロンこうした脳は全体の樹状突起の木を含むように完璧な角度で切断する必要があるため、セル本体16から800以上ミクロンを拡張することができ、マウスのために、より大きな挑戦を提供大脳皮質の深い層内の錐体細胞として樹状突起、 200枚のμmの切片内。デンドライトまたはその枝のいずれかが吻側または尾側方向に延びている場合、これはさえ実現可能ではないかもしれません。それは複数の隣接する脳切片を横切ってニューロンを追跡することによってこの制限に対処することは可能であるが、このアプローチは17をトレースするための正確セクションを整列させるに重要な技術的課題を紹介します。より実用的なアプローチは、より大きな厚さで切断された脳切片内に含まれる全体のニューロンを可視化することであろう。
ゴルジ - コックス法を用いたマウスの500ミクロン厚の脳切片、および彼らのMOを視覚化するために - 私たちはここに400内のニューロンを染色する技術を報告しますrphology800μmの作動距離を有する高分解能シリコン油浸対物レンズを使用。我々は説明ゴルジコックス含浸処理プロトコルは文献6に最も引用現代プロトコルのいずれかから変更されています。厚い脳切片との我々のアプローチは、完全にセクション内に含まれる任意のタイプのニューロンを同定する確率を増加させるという利点を提供します。ユニークな利点を提供するメインプロトコル、我々もまた、本2つのバリエーションに加えて:取り付けられた部分の表面にクレシルバイオレット対比(1)ゴルジコックス染色、脳領域の境界を画定するための層を識別するために切片および最終処理の前に含浸全脳の長期保存のための中間凍結ステップと大脳皮質、及び(2)ゴルジコックス染色。
大人の女性のCD1 - ひずみマウスは、本研究に使用しました。同様の染色は、様々な年齢で男女ともを用いて達成することができます。実験動物は、原則と動物ケアのカナダの協議会のガイドラインに従って世話し、実験プロトコルはグエルフの動物管理委員会の大学により承認されました。
1.ゴルジ - コックス染色
太い脳切片内の2イメージングステンドニューロン
500μmの厚さの脳切片 - このゴルジコックス染色プロトコルと、その2つの任意の変異体を説明400内の個々のニューロンを可視化するために使用することができます。 10×対物レンズ及びZ軸に5μmの手順を使用してキャプチャ二次元Z-突起の代表画像のモンタージュは、 図1に示されている:A1 -前帯状皮質領域1と含む冠状脳切片の大面積のためにC1二次運動野18。セクションは、500μmので切断しました。 図1B1のセクションの軟膜表面に沿った皮質層1に見られるようにクレシルバイオレット染色を含むプロトコル変異体は、例えば、皮質細胞層の同定を可能にすることに留意されたいです。また、ノート染色した切片の同様の外観を全新鮮な組織( 図1A1)とのプロトコルの変形を使用して、メインのプロトコルを使用して脳は長期保存( 図1C1)用の途中で凍結されています。
高解像度30X 1.05 NAシリコーン油浸対物レンズの使用は、与えられた画像に対して少ない総数のスタックを必要とする、Xが大きいとYは、高倍率の対物レンズを用いて撮像ものよりも軸画像スタックの捕獲を可能にします関心のある領域。使用される特定の目的は、画像厚い脳切片に十分以上で800ミクロンの作動距離を有しています。二次元のZ-突起の画像モンタージュは、前帯状皮質領域1内に、図1(A2-C2)に示されているこの目的及びZ軸における1μmの手順を用いて捕捉し、追跡の二次元Z-突起用C3 - A3:示されたニューロンは、図1に示されています。ニューロンおよびそれらの樹状突起の可視化を可能にする高解像度の画像を注各画像スタックの深さ。クレシルバイオレットを使用してプロトコルの変種は、この細胞の染色に使用パラメータはスライスのみの上部付近に観測されるただしと、スライス全体に紫色のニッスル染色を追加します。任意凍結工程を含むプロトコル・バリアントは、しかし、それはまた、スライスの表面の下に光を回折することにより、ヘイズの外観を作成し、拡散バックグラウンド染色を導入し、主プロトコルに類似しているニューロン染色を生じさせます。このヘイズは、スライスに深くを撮像するときに最も明らかであり、 図1C2にZ投影画像において明らかです。 30X対物レンズを用いて撮影された画像はまた、樹状突起棘のような微細な神経構造を視覚化し、定量化するために使用されてもよいです。単一平面画像がセクションの上部に取らつの画像と区画の底部付近取らつの画像と、主プロトコルとその2つの変異体を用いて染色した樹状突起については、図2に示されています。 purplに注意してください。図2B2におけるセクションの下部に拡散紫色の背景/散乱光と見られている。図2B1におけるセクションの上部近く個々ニューロン核内ニッスル物質の電子クレシルバイオレット染色。注意また、その樹状突起とその棘は凍結工程、 図2C2のスライスの下部には明らかであることがより困難との間のコントラストを制限することによって、棘を可視化することを可能にする前述した背景ヘイズとプロトコルを使用してよく染色されているがそれらと隣接する背景。高倍率対物レンズは、また、 図2に示したように、樹状突起棘の形態を特徴付けるために使用することができる:A3 -異なるタイプの棘は、3つのプロトコルのそれぞれを用いて染色した切片ではっきり見えるC3あります。ここでは、60X 1.42 NA油浸対物レンズを使用しました。また、hippoc内の神経細胞を染色するために、この染色プロトコルとその亜種を採用します400μmので切断セクションのampus。 図3に示されるように、ニューロンの樹状突起と棘部のより内側の領域に向かって両方を可視化することができる( 図3において、例えば、海馬歯状回領域:A2 - C2)とセクションのより横領域( 例えば、 図3の海馬CA3領域:A3 - C3)。また、各染色条件は、 図大脳皮質1および2に示すものと類似した結果、利点と欠点を生じたことに留意すべきです。
処理された脳切片の最終的な厚さは、使用される特定のプロトコルの変形に依存します。大脳皮質を含むセクションは、図4Aに示され、500ミクロンで切断されるように、処理及び/カバースリップ搭載セクション(一方向ANOVA、P <0.000の測定厚さでプロトコル変異体の有意な効果がありました1)。ここで、切片の厚さは((N = 6)251.0±12.5(SEM)μm)とし、クレシルバイオレットを含むプロトコル・バリアント((N = 6)219.3±8.5μm)で切片の厚さよりも小さかった主プロトコルを使用して行わ凍結ステップ(340.6±17.1ミクロン(N = 6))(ボンフェローニポストホックテスト、0.0006≤各比較P)を含むプロトコル変異体を用いました。プロトコル変異体の非常に同様の効果は、海馬を含む切片について観察し、400μmで( 図4B、一方向ANOVA、p <0.0001)で切断しました。ここで、切片の厚さは、(198.0±14.8ミクロン(N = 6))主プロトコル(217.6±19.2ミクロン(N = 6))を用いて作製し、クレシルバイオレットを含むプロトコルバリアントセクションの厚さは、使用して作られたよりも小さかったです凍結ステップ(313.5±8.4ミクロン(N = 6))(ボンフェローニポストホックテスト、0.001≤各比較P)を含むプロトコルバリアント。
図1.前帯状領域に染色されたニューロンの典型的な顕微鏡写真1. A1 - C1、10X対物レンズを使用して取得された画像スタックのマージされたZ-突起は前帯状皮質領域1と二次を含む大脳皮質の一方の半球のために示されています運動皮質において約ブレグマ1.18ミリメートル18。ここでは、500ミクロンで切断しました。顕微鏡写真は、クレシルバイオレット染色(B1)新鮮なプロトコルバリアントおよび脳をゴルジコックス含浸(C1)は、以下の凍結されたプロトコルの変形のために、主全新鮮プロトコル(A1)を使用して示されています。スケールバーは500μmです。赤SQで示される領域ごとにC2 -高解像度は、Z投影画像A2で示されている30Xシリコン油浸対物レンズを用いて取得されたスタックをマージC1 - A1での顕微鏡写真でuare。スケールバーは100μmです。ニューロントレースの2次元Z-突起A3に示されている- A2における顕微鏡写真で赤い矢印で示したニューロンのためのC3 - C2。すべての樹状突起の直径は、説明を容易にするために2μmとしました。スケールバーは100μmです。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図2ステンドニューロンのための樹状突起棘の典型的な顕微鏡写真。 30Xシリコン油浸対物レンズを用いて撮像顕微鏡写真は、これらのセクションが500μmで切断した前帯状皮質領域1の層1内に位置するニューロンの樹状突起ための一つの焦点面に示されています。ニューロンは、Fを用いて染色しましたレッシュプロトコル(A1、A2)、クレシルバイオレット染色(B1、B2)と、脳がゴルジコックス含浸(C1、C2)は、以下の凍結されたプロトコル・バリアントのプロトコルバリアント。顕微鏡スライドに次のスライスの底部付近(A2 - C2) -顕微鏡写真は、スライス(C1 A1)の上部に採取しました。 A1-2、B1-2およびC1-2のためのスケールバーは50μmです。顕微鏡写真は、異なる脊椎の種類を識別するために、A3、高倍率60X油浸対物レンズを用いたものフォーカルプレーンのB3及びC3に示されています。 A3、B3とC3のためのスケールバーは10μmです。 この図の拡大版をご覧になるにはこちらをクリックしてください。
55358 / 55358fig3.jpg」/>
図3海馬における染色されたニューロンの典型的な顕微鏡写真。 4X対物レンズを用いて捕捉顕微鏡写真を新鮮なプロトコル(A1)、クレシルバイオレット染色(B1)とのプロトコル変異体を用いて染色したニューロンおよび脳をゴルジコックス含浸(C1以下の凍結されたプロトコル・バリアントための一つの焦点面で示されています)。セクションは、400ミクロンで切断し、約ブレグマ-2.18ミリメートル18に示されています。 C1 -スケールバーは、A1のために500μmです。高倍率顕微鏡写真は、30Xシリコン油浸対物レンズを用いて捕捉し、ニューロンのための1つの焦点面が、海馬の歯状回領域(A2 - C2)内に配置された樹状突起に示され、海馬のCA3領域(A3 - C3)。 C2 -スケールバーは、A2のために50μmでありますそして、A3 - C3。 この図の拡大版をご覧になるにはこちらをクリックしてください。
マウントされたセクションの4の厚さを図。取り付けられた部分の測定厚さは約大脳皮質ブレグマ1.18ミリメートル18を含むセクションのAに示され、500μmの厚さで切断し、約海馬ブレグマ-2.18ミリメートル18を含むセクションのBで400ミクロンで切断されます厚さ。測定されたセクションは、新鮮なプロトコル、クレシルバイオレット染色プロトコル変異体、または脳をゴルジコックス含浸以下の凍結されたプロトコルのバリアントのいずれかを用いて染色しました。両方の脳領域に対して、処理プロトコルの有意な効果がありましたプロトコルによって凍結途中た脳からのセクションでは、(ボンフェローニポストホックテストは、すべてp <0.001)凍結されていなかったものよりも有意に厚かった(一方向ANOVA、P <0.0001)。データは、各群における6つのセクションのために、平均±SEMで示されており、異なる文字を有するデータセットは、有意差を示しています。 この図の拡大版をご覧になるにはこちらをクリックしてください。
私たちは、厚い脳切片内の神経細胞を可視化するために、ここで2つの有用な変種と一緒にゴルジコックスの染色プロトコルを記述します。代表的な結果に示すように、長い800μmの作動距離を持つ高解像度の対物レンズの使用は、500μmので切断脳切片の深さを通して全体ニューロンの信頼性の可視化が可能になります。比較的厚い脳切片のこの研究では、任意のタイプの染色されたニューロンは完全に長く複雑先端樹状突起の木と錐体ニューロンのために特に重要であるスライス、中に含まれている確率が高くなります。例えば、げっ歯類の脳の冠状切片では、これは吻側または尾側方向に遠く延びるニューロンを含めることを可能にし、切片ステップ真正面脳を遮断する場合にも、エラーの余地を増加させます。我々は唯一の前頭面で脳切片化を記載しているが、このプロトコルは、他のPLに切片のために適合させることができます完全に単一のセクション内のラベルされたニューロンを含むために必要とされるanes。採用切片の平面は、調査中のニューロン個体群の形態学的特性に依存します。 C3 - A3:高倍率の対物レンズは、例えば図2の顕微鏡写真を生成するために使用される60X油浸対物レンズとしてスパインタイプ/形態を評価するために必要とされるものの、樹状突起棘は、可視化およびこのプロトコルを使用して定量化することができます。これは、厚いセクションで使用することができるが、対物レンズの作動距離内のスライスの先頭に限定されています。我々は過剰非特異的な染色や背景を招くことなく、標準的な25日間の含浸期間は完全にマウス、ラットおよびcowbird脳全体の神経細胞を染色することがわかってきたように、このプロトコルはまた、同様の脳の大きさの異なる種での使用に適合させることができますそれは1ヶ月を超え含浸期間で発生することがあります。短い含浸時間はsの種のために十分であり得ますmaller脳または個々の研究者によって最適化することができ、上述した種からの脳の解剖サンプルです。
この染色プロトコルのために提示3つの変形のうち、対比されていない新鮮な脳サンプルを使用した主なプロトコルは、最良の結果が得られます。 図2Aにおける顕微鏡写真は、この主なプロトコルが実装厚いセクションの頂部および底部の近くに容易に見えるよく標識樹状突起と棘を生成することを実証しています。クレシルバイオレット対比を追加すると、脳領域および大脳皮質層の定義を容易にするという利点を有するだけでなく、深い厚い部分に可視化する際拡散紫色の背景を追加しました。このプロトコルのバリアントのみ染色するので、クレシルバイオレット、樹状突起とその棘を搭載厚い部分の表面は、セクションの底部( 図2 B)周辺のはっきりと見えました。また、これはproduのように見えます以前は非常に薄いセクション19、20、21を用いた場合であっても、レポートに示されたものよりも厚い部分の表面付近のニッスル染色のより明確なパターンをCE。凍結工程を含むプロトコル変異体は、樹状ツリー形態の分析のための許容可能な結果をもたらします。しかし、バックグラウンド染色は、それがより困難に視覚化し、樹状突起棘( 図2 C)を定量すること、したがってスライスに深く撮影する場合に最も顕著であり、新鮮な組織におけるよりもはるかに暗いです。私たちは、凍結されていた脳からのセクションでクレシルバイオレットの対比を試みたが、これはセクション(データは示さず)の底部付近に棘を可視化し、定量化することが極めて困難になるとしても、暗い紫色の背景ヘイズを生産しました。評価されたもう一つの失敗したプロトコルの変種は、前ゴルジコックスimpregnにマウスの脳を凍結含まエーション。これは、(データは示さず)グリアていたかもしれないが、ニューロンのいずれかのタイプを染色しなかった携帯オブジェクトの染色しました。
成功した結果を得るために従わなければならない。このプロトコルでは2つの重要なステップがあります。これは、温度と湿度に大きく依存するため、(1)各研究室内のセクションの乾燥時間を確認することが重要です。乾燥時間が短すぎると、セクションでは、脱水処理中にスライド落ちます。乾燥時間が長すぎる場合、セクションが割れます。これも同じ研究室で季節によって異なりますように、調査研究を予備成形する直前に「テスト」の脳のセットに乾燥時間を確認することが有利であろう。 (2)すべての過剰寒天は脱水工程の前にセクション、顕微鏡スライドから除去しなければなりません。これを行わないと、寒天が変形すると、スライドのオフ部分を引っ張ることがあります。
組織学的ためのもう一つの重要な要因生物学的サンプル中のAl分析は、組織の収縮です。我々は、処理後、脱水及び最後のセクションの厚さは、元のカット値の約半分に減少した主ゴルジコックス・プロトコル( 図4)を用いて脳切片をカバースリップ、取付ことを見出しました。また、凍結工程を含んプロトコル変異体を用いて処理セクションは主プロトコル( 図4)を介して処理された新鮮な切片よりも有意に厚かったことに注意してください。両方のプロトコルが同じ凍結保護や処理の手順を関与、そして唯一の脳の実際の凍結によって異なっていたので、これは面白いと予想外の両方でした。したがって、異なる研究から、あるいは異なる研究室からゴルジ - コックス染色を使用して生成されたニューロンの形態のデータを比較する際のプロトコルの潜在的な違いを考慮することが重要です。我々は文献に最後のセクションの厚さのデータを見つけることができませんでしたが、それは有益であろうニューロンの形態の対策を報告する際の研究者が組織収縮用および/または正しい、このデータを報告するため。また、500μmので切断セクションのための>200μmの最終厚さは最も高倍率の目標の作動距離よりも大きいですが、これは私たちの研究室で使用される30X対物レンズの作動距離内に十分にまだあることに留意すべきです。樹状突起と棘が主ゴルジコックス・プロトコルを使用して、これらのスライスの底の近くにはっきり見えるため、および1mMの範囲を含めて最大はるかに大きい厚さで切断セクション内に含まれるニューロンを可視化することが可能です。
このプロトコルは、単一のセクション内の長い樹状アーバーをトレースする機能など、多くの利点を提供していますが、オプションは、スライスと含浸脳の処理、および優れた脳構造を識別するために、クレシルバイオレットで対比染色のオプションを遅らせるために、いくつかの欠点があることすべきです考慮されます。 25日間の潜伏期間は、いくつかの研究のためには長すぎると考えることができます。深い取り付けられたセクションにイメージする能力が比較的高価である長作動距離と高解像度浸対物レンズへのアクセスに依存します。また、高解像度の微細構造を視覚化する能力は、装着されたスライスの底の近くに1枚の画像として減少します。このプロトコルの実装は、そのために研究されるように、ニューロンと脳領域の形態学的特性に依存する、と研究者が利用可能な機器。私たちは、関心の脳及び領域のサイズ、およびへの樹状突起樹のために切片の平面及び厚さのために、このようなゴルジ - コックス含浸時間などの調査研究を実行する前に、プロトコル変数を、最適化する「テスト」のサンプルを使用することをお勧めします可視化すること。
著者は、彼らが競合する金融利害関係を持たないことを宣言します。
この作品は、自然科学とカナダ(NSERC)の工学研究会、イノベーションのためのカナダ財団(CFIプロジェクト番号30381)からCDCBへジョンR.エバンスリーダー基金研究基盤の助成金、およびによってからCDCBにディスカバリーグラントによってサポートされていましたNSERCからNJMに発見グラント。 ELLオンタリオ大学院奨学金によっておよびゲルフ大学のオンタリオ獣医大学からOVC奨学金によってサポートされていました。 CDSはNSERCからの学部学生の研究助手によってサポートされていました。 ALMはNSERCからアレクサンダー・グラハム・ベル奨学金によっておよびゲルフ大学のオンタリオ獣医大学からOVC奨学金によってサポートされていました。
Name | Company | Catalog Number | Comments |
potassium dichromate | Fisher Scientific | P188-100 | Hazardous |
potassium chromate | Fisher Scientific | P220-100 | Hazardous |
mercuric chloride | Fisher Scientific | S25423 | Hazardous |
Whatman grade 1 filter paper | Fisher Scientific | 1001-185 | |
isoflurane | Pharmaceutical Partners of Canada | CP0406V2 | |
20 mL scintillation vial | Fisher Scientific | 03-337-4 | |
sucrose | Bioshop Canada | SUC700.1 | |
sodium phosphate monobasic | Sigma Aldrich | S5011-500G | |
sodium phosphate dibasic | Sigma Aldrich | S9390-500G | |
50 mL conical tube | Fisher Scientific | 12-565-271 | |
isopentane | Fisher Scientific | AC126470010 | Also known as 2-methylbutane; hazardous |
agar | Sigma Aldrich | A1296-100G | |
small weigh dish | Fisher Scientific | 02-202-100 | |
vibratome | Leica | VT1000 S | |
6-well tissue culture plates | Fisher Scientific | 08-772-1b | |
mesh bottom tissue culture inserts | Fisher Scientific | 07-200-214 | |
paraformadelhyde (PFA), 16% | Electron Microscope Sciences | 15710-S | Hazardous |
ammonium hydroxide | Fisher Scientific | A669S-500 | Hazardous |
Kodak Fixative A | Sigma Aldrich | P7542 | |
superfrost plus slides | Fisher Scientific | 12-550-15 | |
CitroSolv clearing agent | Fisher Scientific | 22-143-975 | |
anhydrous ethyl alcohol | Commercial Alcohols | N/A | |
cresyl violet | Sigma Aldrich | C1791 | |
permount | Fisher Scientific | SP15-100 | |
upright microscope | Olympus | BX53 model | |
colour camera, 12 bit | MBF Biosciences | DV-47d | QImaging part 01-MBF-2000R-F-CLR-12 |
3D motorized microscope stage, controller and enoders | MBF Biosciences | N/A | Supplied and integrated with microscope by MBF Biosciences |
4X microscope objective | Olympus | 4x 0.16 N.A. UplanSApo | |
10X microscope objective | Olympus | 10x 0.3 N.A. UPlan FL N | |
30X microscope objective | Olympus | 30x 1.05 N.A. UPlanSApo | |
60X microscope objective | Olympus | 60x 1.42 N.A. PlanAPO N | |
silicone immersion oil | Olympus | Z-81114 | |
Neurolucida software | MBF Biosciences | Version 10 | |
ImageJ software | U. S. National Institutes of Health | Current version | With the OME Bio-Formats plugin installed |
Photoshop software | Adobe | version CS6 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved