Method Article
We describe the generation of far-infrared radiation using an optically pumped molecular laser along with the measurement of their frequencies with heterodyne techniques. The experimental system and techniques are demonstrated using difluoromethane (CH2F2) as the laser medium whose results include three new laser emissions and eight measured laser frequencies.
遠赤外線の発生とその後の測定は、高分解能分光法、電波天文学、およびテラヘルツイメージングにおいて多くの用途を発見しました。約45年にわたって、コヒーレント、遠赤外線の発生は、光励起分子のレーザーを使用して達成されました。遠赤外線レーザー放射線が検出されると、これらのレーザ放射の周波数は三レーザーヘテロダイン技術を用いて測定されます。この技術では、光励起分子レーザから未知の周波数は、二つの安定化、赤外線基準周波数との差周波数で混合されます。これらの基準周波数は、それぞれが外部低圧基準セルからの蛍光信号を用いて安定化され、独立した二酸化炭素レーザによって生成されます。既知および未知のレーザ周波数間のビートが得られ、その出力仕様に観察される金属 - 絶縁体 - 金属点接触ダイオード検出器によって監視されますtrumアナライザ。これらのレーザ放射との間のビート周波数は、その後、未知の遠赤外線レーザ周波数を推定することが知られている基準周波数で測定され、組み合わされます。それらはしばしば高いのように、他の測定のための基準として使用されているように、この技術を用いて測定レーザ周波数の結果の1シグマ分数不確かさが10 7±5重量部である。正確に遠赤外線レーザ放射の周波数を決定することは重要ですレーザー磁気共鳴を用いたフリーラジカルの-resolution分光調査。この研究の一環として、ジフルオロメタン、CH 2 F 2は 、遠赤外線レーザ媒質として使用しました。全部で8つの遠赤外線レーザー周波数は0.359から1.273テラヘルツの範囲の周波数を有する第1の時間を測定しました。これらのレーザーの排出量のうちの3つは、この調査中に発見され、CO 2に対するそれらの最適運転圧力、偏光で報告されています
遠赤外線レーザ周波数の測定は、最初の彼らは、マイクロ波信号の高次高調波と混合して直接放電シアン化水素レーザーからの311と337ミクロンの排出のための周波数を測定1967年Hockerおよび共同研究者によって行われました。シリコンダイオード1インチより高い周波数を測定するために、レーザと高調波の混合装置のチェーンは、レーザの高調波2を生成するために使用されました。最終的には両者はレーザが必要な差周波数を3,4を合成するために選択された二酸化炭素(CO 2)を安定化します。今日、4テラヘルツまでの遠赤外線レーザー周波数が2で生成された差分周波数の最初の高調波を使用して、この技術を用いて測定することができるCO 2基準レーザを安定化。より高い周波数のレーザー放射は、また、メタノールの同位体のCHD 2 OH及びCH 3から9テラヘルツレーザ放射として第二高調波を用いて測定することができます 18 OH UB。長年の間に5,6、レーザー周波数の正確な測定は、科学実験7,8の数に影響を与えたとパリでの度量衡の総会によってメートルの新しい定義の採用を可能にしました1983年9から11
例えば、記載されたもののようなヘテロダイン技術は、光励起分子レーザによって生成された遠赤外線レーザ周波数の測定において非常に有益でした。チャンとブリッジ12によって光学的に励起分子レーザの発見以来、光学的に励起遠赤外線レーザ放射の何千ものレーザ媒質の様々な生成されています。光学的にCO 2レーザで励起するとき、例えば、ジフルオロメタン(CH 2 F 2)とその同位体は、250以上のレーザー放射を生成します。その波長は約95.6から1714.1ミクロンの範囲13 - 18 - > 15までのこれらのレーザー排出量の約75%は、いくつかの分光16が割り当てられているが、それらの周波数が測定されてきました。
これらのレーザー、及びそれらの正確に測定された周波数は、高分解能分光法の発展に重要な役割を果たしています。彼らは、レーザーガスの赤外分光研究のための重要な情報を提供します。彼らはしばしば吸収スペクトル19から直接アクセスできない励起振動状態レベルの間の接続を提供するので、多くの場合、これらのレーザの周波数は、赤外線および遠赤外線スペクトルの分析を確認するために使用されます。彼らはまた、レーザー磁気共鳴技術20で一過、短 寿命のフリーラジカルを調査研究のための主要な放射源として機能します。この非常に敏感な技術では、常磁性原子、分子、分子イオンで回転し、RO-振動ゼーマンスペクトルは、rすることができますこれらのフリーラジカルを作成するために使用される反応速度を調査する能力とともにecorded分析しました。
この作業では、 図1に示した光励起分子レーザは、ジフルオロメタンから遠赤外線レーザー放射を生成するために使用されてきました。このシステムは、連続波(CW)CO 2ポンプレーザと遠赤外線レーザ共振器から成ります。遠赤外線レーザキャビティ内部のミラーが残りのポンプ放射を散乱、空洞の終わりに終了する前に、26の反射を受けて、研磨銅管の下のCO 2レーザ放射をリダイレクトします。従って、遠赤外線レーザー媒質は、横ポンピングジオメトリを使用して励起されます。レーザー作用を生成するために、いくつかの変数がいくつか同時に、調整され、レーザ放射が観測されると、すべてのその後に最適化されています。
この実験では、遠赤外線レーザー放射線は、金属INSUによって監視されていますレータ - 金属(MIM)点接触ダイオード検出器。 MIMダイオード検出器は、1969年21は 、レーザ周波数の測定に使用されている-レーザ周波数の測定は23、MIMダイオード検出器は、ダイオード上に2つ以上の放射線源との間の入射高調波ミキサです。 MIMダイオード検出器は、光学研磨ニッケルベース 24 に接触する先鋭化タングステン線で構成されています。ニッケルベースは、絶縁層である、天然に存在する薄い酸化物層を有しています。
当初は文献に記載された方法に従って27 -レーザ発光が検出されたら、その周波数は、3つのレーザーヘテロダイン法25を用いて測定しながら、その波長、偏光、強度、及び最適化された動作圧力を記録しました。 4. 図2は、2つの追加のCW CO 2参照レーザは、独立した周波数のSTAを有する光ポンピング分子レーザを示しています外部、低圧参照セル28から 4.3ミクロンの蛍光シグナルのラムディップを利用bilizationシステム。この原稿は、遠赤外レーザーの排出量だけでなく、その波長を推定すると、正確にその頻度を決定する方法を検索するために使用されるプロセスの概要を説明します。三レーザーヘテロダイン技術に関する具体的なだけでなく、様々なコンポーネントやシステムの動作パラメータは参照4、25-27、29、および30と一緒に補足表Aに記載されています。
実験1.計画
2.生成遠赤外レーザーの排出量
3.遠赤外レーザーの周波数を決定します
前述のように、遠赤外線レーザー放射のために報告された周波数は、CO 2基準レーザ線の少なくとも2つの異なるセットを実行少なくとも12回の測定の平均値である。使用した場合、表2は、235.5マイクロメートルのレーザ発光のために記録されたデータを概説します9、P 04、CO 2ポンプレーザ。この遠赤外線レーザー放射のために、ビート周波数の14の個々の測定値を記録しました。 9 R 10及び9 P 38 CO 2基準レーザ放射を使用しながら、測定の最初のセットを記録しました。遠赤外レーザーの周波数がわずかに増加したように、ステップ3.4.5のために、ビート周波数も増加することが観察されました。 |νCO2(I)-νCO2(II)|これは、遠赤外線レーザー周波数が9 R 10および 9、P 38、CO 2の基準レーザーとの差周波数の大きさよりも大きかった示しています。したがって、符号O式(1)におけるビート周波数fはCO 2参照レーザのこのセットのために陽性でした。逆に、測定値の第2のセットは9 R 16、9 P 34 CO 2基準レーザ放射を使用します。 3.4.5ステップが実行されたとき、遠赤外線レーザーの周波数がわずかに増加したが、ビート周波数の減少が観察されました。これは、遠赤外線レーザ周波数が9 R 16および 9、P 34、CO 2参照レーザ間の差周波数の大きさ未満であった示しています。したがって、CO 2参照レーザのこのセットのために式(1)におけるビート周波数の符号がマイナスとなりました。 νFIR 表2、計算された遠赤外線レーザーの周波数に示すように、両方の状況で±0.12 MHzの1シグマ標準偏差内に同一のままでした。
この実験的な技術を用いて測定した平均遠赤外線レーザー周波数がに記載されています表3およびCO 2ポンプラインの順に配置されています。平均レーザー周波数を1 -1 = 29 979.2458 MHzのを使用して計算し、それに対応する波長と波数、と報告されています。すべての遠赤外線レーザー周波数は、最適な動作条件の下で測定しました。この研究を通して、いくつかの以前に報告された周波数を測定し、公表された値と一致することが見出されました。 7 - 1シグマフラクショナル不確実性は、Δνは、この技術を用いて測定の遠赤外レーザーの周波数が±5×10です。この不確実性は、このシステムでは、遠赤外レーザーの広がった利得曲線の対称性と幅、および測定4,25,31の精度で知られている周波数の再現性に由来するものです。
この研究中に発見された遠赤外線レーザー放射はW& 'の強度を有することが観察されました#8217; 0.001から0.01 mWのに力の範囲に対応します。 18 Wのパワーを持つ9、P 36、CO 2ポンプはさらに、 表3は、それぞれの新しいの偏光を含んで使用する場合に比較のために、メタノール118.8μmのラインはわずか10ミリワット以上のパワーを持つVVSように、このシステムで観察されました遠赤外線レーザ発光は、それぞれのCO 2ポンプレーザと比較して測定。ほとんどの場合、一つの偏光は、偏光に平行またはCO 2ポンプレーザに垂直のいずれかを支配することが観察されました。支配的な偏光が観測されなかった状況では、両方の偏光が一覧表示されています。
合計で8つの遠赤外線レーザー放射は、横ポンピング形状を有する光励起分子レーザシステムを使用してジフルオロことによって生成しました。これは235.5、335.9、及び416.8ミクロンの波長を有する三遠赤外線レーザ放射の発見が含まれています。検出されると、三レーザーヘテロダイン技術は、各観察遠赤外線レーザー放射のための周波数を測定しました。これらのレーザー排出量の周波数は、0.359から1.273のTHzの範囲であり、10 7で±5部の端数の不確実性が報告されています。
図1 二酸化炭素ポンプレーザー及び遠赤外線レーザ共振器からなる光励起分子レーザシステムの概略図。遠赤外線レーザー媒質は、横ポンピングジオメトリを使用して励起されます。文献からのわずかな修正を得て転載。スプリンガー科学・ビジネス・メディアからの親切な許可を得て15。 この図の拡大版をご覧になるにはこちらをクリックしてください。
三レーザーヘテロダイン周波数測定システムの模式図 、図2 は、ヘテロダイン方式は、横励起幾何二つの追加の二酸化炭素基準レーザを利用した分子の光励起レーザを含みます。図示しないが、各レーザによって生成された放射線を監視し、安定化するために使用される電子システムです。 ©[2015] IEEE。参考文献から、若干の変更と許可を得て、再版。 27. この図の拡大版をご覧になるにはこちらをクリックしてください。
図3 拡大レンズを通して見たMIM点接触ダイオード検出器で使用されるタングステンワイヤザワイヤーの長さは約2mmです。最高のバネ作用については、ベンドの角度は90 Oの近くにする必要があり、すべてが同じ平面上にあります。
オシロスコープのディスプレイ上で見られるように9、P 04、CO 2ポンプレーザを使用して光学的にポンピングCH 2 F 2の274.8μmのレーザー照射によって生成された波形 4.図 。CO 2ポンプ放射が約45で動作する光チョッパによって変調されますヘルツ。 MIMダイオード検出器の抵抗値は約100であり、信号が約6μV(ピーク・ツー・ピーク)です。オシロスコープの表示は10μV/分割に設定されています。
図5は、 左と真ん中の写真は、オシロスコープ上の各変調信号によって測定されるように、電力は約100mWで、約4 mVの(ピーク・ツー・ピーク)である。それぞれCO 2基準レーザ、9 R 16、9 P 34からの出力を示しモニターの電源メーター。右の写真は、2つの基準信号を適切MIMダイオード検出器で混合され、約7 mVで示す(ピーク・ツー・ピーク)との両方の基準レーザから合成された信号を示しています。 MIMダイオード検出器の抵抗は約100Ωです。各写真のオシロスコープの表示は、1 MV /除算に設定されています。 CO 2放射は約70 Hzで動作する光チョッパによって変調されます。
図6. 低圧力の飽和蛍光シグナル(6 Pa)で、CO 2 9 R 24 CO 2を使用しながら、レーザ放射は、このグラフは、CO 2基準レーザのPZTに印加される電圧は、約13分で約570 V 0から上げている間に52 Hzで外部チョッパを介してCO 2基準レーザ放射を変調することにより得られます。ロックインアンプは、300ミリ秒の時定数と200 mVの感度に設定されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図7. 低圧力の飽和蛍光シグナル(6 Pa)でのCO 2オシロスコープで見た9 R 24、CO 2レーザ発光を使用している間。PZT電圧はの中心から離れているときに左の写真は、オシロスコープの表示を示し、ラムディップ、目に約80 V写真です。 PZT電圧がこれらの写真にはそれぞれ、どちらかすぐにラムディップの中心の左または右にある約278および295 Vの時、中、右の写真は、オシロスコープの表示を示す。この図の拡大版を表示するには、こちらをクリックしてください。
9、P 04、CO 2ポンプレーザと9 R 16および 9、P 34、CO 2参照レーザを用いた光ポンピングCH 2 F 2の235.5μmのレーザ発光の間のビート信号 8.図 。約25メガヘルツのスパンは、典型的には、中古。ビート信号の大部分は±5 GHz帯内で観察されています。しかしながら、低signal-を有するこれらの検索パラメータ内の特定の周波数領域が存在します雑音。そのため、少し大きめの探索領域を使用すると、時々参考にされています。
共振器のモードに対応する離散的なピークの組からなる典型的なレーザ共振器のインターフェログラム(または空洞スキャン)の 図9 の部分は、全く発振が発生していない領域によって分離される。このスキャンは、光励起CHによって生成511.445ミクロンのレーザ発光を示します9 R 28 CO 2ポンプを用いて2 F 2。マイクロメータの位置における減少は、遠赤外線レーザキャビティの長さ(ミラーのミラー分離)の減少に相当します。 MIMダイオードは、この遠赤外線レーザー照射によって生成された20μVピーク・ツー・ピークの最大信号を検出しました。検出器からの出力は、ロックインアンプ、300ミリ秒の時定数及び20μVsensitivitにセットを用いて記録しましたyは、コンピュータとのインタフェース。 この図の拡大版をご覧になるにはこちらをクリックしてください。
表1:違い周波光ポンピングCH 2 F 2から235.5μmのレーザ発光のための計算された周波数に近いCO 2参照レーザのセット9、P 04、CO 2レーザ発光を使用して励起されたとき。
表2:光励起CH 2 F 2から235.5マイクロメートルのレーザ発光のための測定されたビート周波数9 P 04 CO 2レーザ放射を使用して励起されたとき。 CO 2参照レーザの二つのセットが使用されていますdは、既知の差周波数を生成する(|νCO2(I)-νCO2(II)|)。
表3:光ポンピングCH 2 F 2からの新しい遠赤外線レーザー周波数。
補足表A:いくつかの関連する商業コンポーネントを含む実験システムの技術的な詳細。
いくつかの追加の議論が必要なプロトコル内いくつかの重要なステップがあります。遠赤外レーザ波長を測定する場合、ステップ2.5.3に概説されるように、それが使用されている遠赤外線レーザー放射の同じモードを確保することが重要です。遠赤外レーザーの波長( すなわち、TEM 00、TEM 01など)の複数のモードは、レーザキャビティ内で生成することができ、それが波長13,29を測定するために使用される適切な隣接するキャビティモードを特定することが重要であり、 41。高次モードを除去することを助けるために、虹彩は、各レーザ共振器内に含まれます。正確に遠赤外線レーザ周波数を測定する場合、それは(TEM 00)レーザーモード、特にCO 2参照レーザは、それらの基本的な動作に不可欠です。アイリスも対称であるスペクトルアナライザの遠赤外線レーザーによりトレースパターンを確実にするために使用されます。これまで複数の状況について-infraredレーザー波長は9 P 04、波長で較正吸収するフィルタのセットの場合のように、遠赤外レーザ波長を区別するのを補助するために使用され、特にCO 2ポンプラインにより生成されます。彼らはまた、遠赤外レーザキャビティを出る任意の散乱CO 2レーザ放射を減衰させるために使用することができます。
2.4節には、遠赤外線レーザ放射の生成を説明しています。多数の研究の上に、我々は、周波数オフセットの複数の異なる波長がわずかに異なる設定で同一のCO 2ポンプレーザによって生成することができることを見出しました。例えば、9 P 04 CO 2ポンプレーザが、この研究の間に測定された残りの波長は9 P 04からわずかに異なる周波数を使用して生成された、一方のポンプ周波数でのCH 2 F 2の289.5及び724.9ミクロンの波長を生成することができますCO 2ポンプレーザ。これはaccomplですその広がった利得曲線(この実験では、中心周波数から±約45メガヘルツ)を介してCO 2ポンプレーザの周波数をチューニングPZTに印加する電圧を変化させることによりished。特にセクション2.4で扱われていないが、我々はこれが遠赤外線レーザー放射の検索で注目すべき特徴であると考えています。
複数の遠赤外線レーザー放射が、同じ周波数オフセットで同じCO 2ポンプレーザー線により生成される状況では、レーザ共振器のインターフェログラム(または空洞スキャン)が生成され、異なる遠赤外線レーザー放射の識別を支援するために行うことができます45 - 図9は、遠赤外線レーザキャビティの長さ42の減少の関数としてプロットした出力パワーを有する典型的なレーザ共振器のインターフェログラムの一部を示しています。
セクション3.4、CO 2の二つの異なるセットで概説したように参照レーザは、遠赤外線レーザ周波数を測定するために使用されます。これは、ビート周波数がCO 2の基準レーザーとの間に生じる差周波数の上または下にあるかどうかについての不確実性を排除するのに役立ちます。挑戦することができ、遠赤外線レーザ周波数が増加するとビート周波数のわずかなシフトを観察弱いビート信号を扱うときに独立して遠赤外線レーザ周波数を確認する方法を提供すると共に、それは特に有用でした。
MIMダイオード検出器は、その高速性、感度、広いスペクトル範囲23,24には、この実験系の必須成分です。しかし、機械的不安定性、電磁波障害に対する感受性、再現性が悪い、それがその感度を維持しながら検出することができる最大電力の制限を含む、MIMダイオード検出器にはいくつかの制限があります。遠赤外レーザーのFRを測定しながらequencies、MIMダイオード検出器の感度は、それぞれCO 2基準レーザのパワーは150ミリワットを超えた場合、時間で急速に減少することが見出されました。
MIMダイオード検出器を越えて、本発明の技術の主な制限は、遠赤外線レーザー4,31,46の安定性です。実験システムの現在の構成には限界がCO 2ポンプレーザの周波数オフセットを測定することができないことです。述べたように、周波数オフセットは、遠赤外線レーザー放射及びCO 2のポンプレーザーの中心周波数を生成するために、CO 2ポンプレーザが使用する周波数との差として定義されます。従って、遠赤外線レーザ媒質の吸収周波数とCO 2のポンプレーザーの中心周波数との間の差を表します。典型的には、オフセット周波数を容易に不注意Oを散乱する任意のCO 2レーザ放射線を用いて測定されます遠赤外線レーザキャビティF。私たちの現在の構成ではしかし、非常に少ないCO 2レーザ放射線は、このような測定のために利用可能です。オフセット周波数を測定する他の方法は、プロジェクトの将来の反復に組み込むことができます。これはカップルに、MIMダイオード検出器にポンプ放射の一部を追加のビームスプリッタとミラーを使用することを含みます。遠赤外線レーザ発光25,34に分光遷移を割り当てる際、周波数オフセットの測定が有益です。
遠赤外レーザーの周波数は、2つの光学的に励起遠赤外線レーザー二遠赤外線レーザーの一つの周波数が既知であり、基準周波数47として使用されるMIMダイオード検出器でのマイクロ波源をヘテロダインすることによって測定しました。より高い精度での遠赤外線の周波数の使用は、それらdiscuに類似したTHz周波数櫛合成と同様に他の技術を使用して可能です参考文献にssed。 48-54。レーザー周波数を測定することは、テラヘルツイメージング55、高分解能分光13,20のためのTHz放射の源としての役割と、そのレーザ発振に関連する複雑なスペクトルの分析を補助する上でのテラヘルツアプリケーションにおける光ポンピング分子レーザーの役割を拡大メディア19,34,37。
Certain commercial equipment is identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the authors, nor does it imply that the equipment identified is necessarily the best available for the purpose.
This work was supported in part by the Washington Space Grant Consortium under Award NNX10AK64H.
Name | Company | Catalog Number | Comments |
Vacuum pump | Leybold | Trivac D4A | HE-175 oil; Quantity = 3 |
Vacuum pump | Leybold | Trivac D8B or D16B | Fomblin Fluid; Quantity = 1 of each |
Vacuum pump | Leybold | Trivac D25B | HE-175 oil; Quantity = 1 |
Optical chopper with controller | Stanford Research Systems | SR540 | |
Lock-in amplifier | Stanford Research Systems | SR830 | |
Spectrum analyzer | Agilent | E4407B | ESA-E Series, 9 kHz to 26.5 GHz Spectrum Analyzer |
Amplifier | Miteq | AFS-44 | Provides amplification of signals between 2 and 18 GHz. The amplifier is powered by a Hewlett Packard triple output DC power supply, model E3630A. |
Amplifier | Avantek | AWL-1200B | Provides amplification of signals less than 1.2 GHz. |
Power supply | Hewlett Packard | E3630A | Low voltage DC power supply for amplifier. |
Power supply | Glassman | KL Series | High voltage power supply for the CO2 lasers; Quantity = 2; negative polarity |
Power supply | Fluke | 412B | High voltage power supply used with the NIST Asymmetric HV Amp |
Detector | Judson Infrared Inc | J10D | For fluorescence cell; Quantity = 2 |
CO2 laser spectrum analyzer | Optical Engineering | 16-A | Currently sold by Macken Instruments Inc. |
Thermal imaging plates with UV light | Optical Engineering | Primarily used for aligning the CO2 reference lasers. Currently sold by Macken Instruments Inc. | |
Resistors | Ohmite | L225J100K | 100 kW, 225 W. Between 4 to 6 resistors are used in each ballast system. Each CO2 laser has its own ballast system. Fans are used to cool the resistors. |
HV relay, SPDT | CII Technologies | H-17 | Quantity = 3; one for each CO2 laser |
Amplifier | Princeton Applied Research | PAR 113 | Used with fluorescence cell; Quantity = 2 |
Oscilloscope | Tektronix | 2235A | Similar models are also used; Quantity = 2 |
Oscilloscope/Differential amplifier | Tektronix | 7903 oscilloscope with 7A22 differential amplifier | |
Power meter with sensor | Coherent | 200 | For use below 10 W. This is the power meter shown in Figure 2. |
Power meter with sensor | Scientech, Inc | Vector S310 | For use below 30 W |
Multimeter | Fluke | 73III | Similar models are also used; Quantity = 3 |
Data acquisition | National Instruments | NI cDAQ 9174 chassis with NI 9223 input module | Uses LabVIEW software |
Simichrome polish | Happich GmbH | Polish for the Nickel base used in the MIM diode detector. Although the Nickel base can be used immediately after polishing, a 12 hour lead time is typically recommended. | |
Pressure gauge | Wallace and Tiernan | 61C-1D-0050 | Series 300; for CO2 laser; Quantity = 3 |
Pressure gauge with controller | Granville Phillips | Series 375 | For far-infrared laser |
Zirconium Oxide felt | Zircar Zirconia | ZYF felt | Used as a beam stop |
Zirconium Oxide board | Zircar Zirconia | ZYZ-3 board | Used as a beam stop; Quantity = 4 |
Teflon sheet | Scientific Commodities, Inc | BB96312-1248 | 1/32 inch thick; used for the far-infrared laser output window |
Polypropylene | C-Line sheet protectors | 61003 | used for the far-infrared laser output window |
Vacuum grease | Apiezon | ||
Power supply | Kepco | NTC 2000 | PZT power supply |
PZT tube | Morgan Advanced Materials | 1 inch length, 1 inch outer diameter, 0.062 inch thickness, reverse polarity (positive voltage on outside); Quantity = 3 | |
ZnSe (AR coated) | II-VI Inc | CO2 laser window (Quantity = 3), lens, and beam splitter (Quantity 3) | |
NaCl window | Edmond Optics | Quantity = 1 | |
CaF window | Edmond Optics | Quantity = 2 | |
Laser mirrors and gratings | Hyperfine, Inc | Gold-coated; includes positioning mirrors | |
Glass laser tubes and reference cells | Allen Scientific Glass | ||
MIM diode detector | Custom Microwave, Inc | ||
Other | Other materials include magnetic bases, base plates, base clamps, XYZ translation stage, etc. |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved