Method Article
Here, we present human pluripotent stem cell (hPSC) culture protocols, based on non-colony type monolayer (NCM) growth of dissociated single cells. This new method, utilizing Rho-associated kinase inhibitors or the laminin isoform 521 (LN-521), is suitable for producing large amounts of homogeneous hPSCs, genetic manipulation, and drug discovery.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
多系列成体組織に向かって差別化するhPSCsの容量は、心血管、肝臓、膵臓、および神経システム1-4を伴う重篤な疾患に苦しむ患者の治療に新たな道を開いた。 hPSCsから派生した様々な細胞型はまた、疾患のモデリング、遺伝子工学、薬物スクリーニング、および毒性試験1,4のための堅牢な携帯プラットフォームを提供するであろう。将来の臨床的および薬理学的用途を保証する重要な問題は、 インビトロでの細胞培養を介して臨床グレードhPSCs多数の生成である。しかし、現在の培養系ではコロニー5,6としてhPSCsの様々なフィーダーフィーダーフリーの培養液を含む、不十分であったり、本質的に可変のどちらかである。
hPSCs株哺乳動物の初期胚の内部細胞塊(ICM)の多くの構造的特徴のコロニー型の増殖。 ICMは3生殖層に分化する傾向がある多細胞の環境であるため、異種シグナル勾配の存在。このように、初期胚発生における不均一性の獲得は、分化に必要なプロセスであると考えますが、HPSC文化の不要な機能です。 HPSC培養における不均一性は、多くの場合、過度のアポトーシスシグナルおよび準最適な成長条件による自発的分化によって誘導される。従って、コロニータイプの培養で、不均一な細胞は、しばしば、コロニー7,8の周囲に観察される。また、ヒト胚性幹細胞(hESCの)中の細胞が、例えばBMP-4 9とシグナル伝達分子に展示差動応答をコロニーことが示されている。また、コロニー培養法は、制御不能の成長率およびアポトーシスシグナル伝達経路6,9に低い細胞収量だけでなく、凍結保存と非常に低い細胞回収率を生成する。近年、種々の懸濁培養は、培養のためにhPSCs particulが開発されているフィーダーマトリックスを含まない条件下6,10-13中hPSCs、大量の拡張のためアルリー。明らかに、別の培養システムは、独自の長所と短所を有する。一般に、hPSCsの不均一な性質を遺伝子工学6 hPSCsにDNAとRNAの物質を送達するための準最適であるのコロニー型および凝集培養法における主な欠点のうちの1つを表す。
明らかに、現在の培養方法のいくつかの欠点を回避する新しいシステムを開発する必要性が不可欠である。単一細胞の生存を改善する(このようなROCK阻害剤Y-27632およびJAK阻害剤1のような)低分子阻害剤の発見は解離し、HPSC文化14,15のための道を開く。これらの小分子を使用することで、我々は最近、非コロニー型(NCM)を解離·hPSCs 9の成長に基づいた培養法を開発した。この新規培養法は、単一細胞継代と高密度の両方を兼ね備え、メッキ法、私たちは主要な染色体異常9なしで一貫性のある成長サイクルの下で均質hPSCsを大量に生成することができます。あるいは、NCM培養は広い用途のための培養方法を最適化するために、異なる小分子と(例えば、ラミニンなど)が定義行列を用いて実施され得る。ここでは、NCMのカルチャに基づいて、いくつかの詳細なプロトコルを提示し、遺伝子工学のための詳細な手順を描く。 NCMプロトコルの汎用性を実証するために、我々はまた、多様なROCK阻害剤で、単一のラミニンアイソフォーム521( すなわち 、LN-521)でNCM文化をテストしました。
hPSCsの単一細胞に基づく非植民地型単層(NCM)の文化。
1。準備
2プロトコル1(基本):フィーダー上HPSCコロニーを育て
3プロトコル2:NCMにHPSCコロニーをフィーダからの変換
4プロトコル3:NCM文化にマトリゲル上HPSCコロニーを変換する
5プロトコル4:上hPSCsのNCM文化LN-521
6プロトコル5:NCM文化プラスミドDNAトランスフェクションのために
7プロトコル6:NCM文化マイクロRNAのトランスフェクションのために
NCM文化の一般的なスキーマ
図1に、ROCK阻害剤Y-27632の存在下での高密度単一細胞めっき後hPSCsの動的な変化を示す典型的なNCM培養スキーマを表します。これらの形態学的変化は、細胞のクラスター形成をプレーティングし、細胞縮合、続いて指数関数的な細胞増殖( 図1A)の後に細胞間接続を含む。代表的な実験は、1日目に、10μMのY-27632の存在下で個/ cm 2 1.9×10 5細胞の密度で単一細胞としてメッキ、WA01(H1)ヒトES細胞を示している( 図1B、左のパネル)は、さらにすることなく伝播2日目のコロニー( 図1B、中央パネル)の形成、および所望の実験のために、または3日目( 図1B、右パネル)における細胞の継代に好適である均質な単層として集光される。
<強い>様々なROCK阻害剤は、NCMの文化をサポート
96ウェルプレートアッセイは、概念実証ハイスループット薬物スクリーニングのために使用した。また、NCMの培養を支持するための様々なROCK阻害剤の使用を最適化するように設計した。およそ、31,000 SCU-I10細胞、ヒト誘導多能性細胞(hiPSCs)17が解離し、あるマトリゲル被覆されたROCK阻害剤の異なる濃度の存在下でウェルに播種した。 24時間後、細胞をこれらの条件下で細胞生存を決定するために、CCK-8ベースの生存率アッセイに供した。我々は以前にNCM方法は、単一細胞メッキを増強するために10μMで、ROCK阻害剤Y-27632の使用を必要とすることを示した。この報告では、10μMY-27632が著しくhiPSCsの効率をメッキ24時間単一細胞(P <0.05)( 図2)を増加させることを確認した。また、Y-39983(I阻害ROCK)、phenylbenzodioxane(ROCK II inhibiことがわかった器)、およびthiazovivin(新規なROCK阻害剤)有意に単一細胞プレーティング効率を調節し、それらの対照(P <0.05)( 図2)と比較した場合、1μMでNCMの成長を促進する。さらに、単一細胞プレーティング効率(1μMでの)は、3つのROCK阻害剤の効果は、10μM(P> 0.05)( 図2)におけるY-27632のそれに匹敵した。注目すべきことに、私は(5μmに)阻害岩は他の分子よりも特異的な相互作用が関与し、1μM(P <0.05)での薬物と比較して顕著な細胞毒性を示すことが表示されます。したがって、様々なROCK阻害剤は、将来のNCM培養を支持するために使用することができる。しかし、これらの新しい阻害剤とNCMの下で両方のhESCとhiPSCsの完全な特性は、将来の使用のために必要とされるであろう。
LN-521は、ROCK阻害剤を使用することなく、NCM培養を支持する
Tを決定するために、彼のhESCの成長を支援する具体的なラミニンアイソフォームの役割は、我々は、異種非含有培地TeSR2におけるLN-521コートプレート上でSCU-I30 hiPSCsを培養した。興味深いことに、単独のLN-521は、ROCK阻害剤の存在なしに、単一細胞播種と、この条件の下で15継代のための後続のNCMの成長( 図3)をサポートしています。抗NANOGポリクローナル抗体とSCU-I30細胞の免疫染色は、この条件の下で細胞が核内で高いNANOGの発現( 図3A)を有することを示した。フローサイトメトリー分析は、hESCのマーカー発現プロフィールが、ROCK阻害剤Y-27632( 図3B)を用いて、NCMのように増殖させた細胞と同様であったことを示した。
レンチウイルス粒子を使用せずにマイクロRNA配信の高効率
DY547標識オリゴヌクレオチドのマイクロRNAを用いたトランスフェクションは、NCM条件下WA01(H1)細胞で行った。 WA01のヒトES細胞は、NCMでのように成長させた 2.5%2( 図4A)のためのmTeSR1におけるマトリゲルおよび18( 図4B)は、それぞれ通路。これらの細胞は、高いトランスフェクション効率が24時間後にトランスフェクション( 図4Aおよび図4B)を示した。一般的に、我々は、トランスフェクション後24時間でヒトES細胞で91パーセントにトランスフェクション効率を得ることができます。
NCM文化の図1(A)スキーマ。折れ線グラフは、NCMの条件の下で、典型的な3日間の培養での多細胞関連の動的な変更の輪郭を描く。(B)16継代のmTeSR1培地に2.5%マトリゲル上でのNCM条件で伝播WA01(H1)ヒトES細胞の代表的な位相画像が(指定WA01、mcp16)など。下のパネルは、上部パネルの拡大図である。スケールバーは、100μmを示す。EF = "https://www-jove-com.remotexs.ntu.edu.sg/files/ftp_upload/51519/51519fig1highres.jpg"ターゲット= "_blank">この図の拡大版を表示するには、こちらをクリックしてください。
図2の96ウェルフォーマットを用いて単一細胞生存アッセイ。約31,000 SCU-i10でhiPSCs 17は、示された濃度でRho関連キナーゼ(ROCK)経路に関連する種々の小分子阻害剤の存在下で2.5%マトリゲル上に播種し。 24時間後、細胞を450nm(A450)での吸光度を測定することにより、CCK-8生存率アッセイに供した。スチューデントt検定は、種々のROCK阻害剤との間の単一細胞プレーティング効率の差は統計的有意であるかどうかを決定するために使用した。単数アスタリスク記号(*)は、P&#(阻害剤との間に有意差がないことを示します62; 0.05)、(**)観察された差である二重アスタリスク記号は、統計的有意性(P <0.05)であるのに対し。ヒストグラムの列は四連の決定やバーの平均値は標準偏差を表す指定します。
図3。ラミニン521上hiPSCsのNCM文化(LN-521)ROCK阻害剤が存在しない。SCU-I30 hiPSCラインはセルユニット幹NIHの確立された。 SCU-I30細胞は、ROCK阻害剤などの小分子阻害剤を使用せずに15継代異種非含有培地中でTeSR2 LN-521-コーティングした6ウェルプレート上で増殖させた。抗有するSCU-I30細胞の(A)免疫染色-NANOGポリクローナル抗体およびヘキスト33342(ヘキスト)で対比。注目すべきは、負のNANOG染色を持っているいくつかの細胞が目です有糸分裂の下のE細胞(B)のY-27632なしのLN-521に、10μMのY-27632(上のパネル)またはNCMを使用して2.5%マトリゲル上NCMとして成長SCU-I30細胞中のHPSCマーカー発現のフローサイトメトリー分析(下のパネル)。免疫染色およびフローサイトメトリー分析の両方のための手順は、以前に記載された5。スケールバーは、100μmを示す。 この図の拡大版を表示するには、こちらをクリックしてください。
図4マイクロRNAトランスフェクションのためのNCM hPSCs培養。WA01 hESCを、それぞれ、 図2(A)及び図18(B)継代mTeSR1中の2.5%マトリゲル上NCMとして増殖させた。 DyのでトランスフェクションWA01細胞の代表的な位相および蛍光画像トランスフェクション後24時間で、トランスフェクション効率を監視するための547-標識コントロール·マイクロRNA。スケールバーは、100μmを表しています。 この図の拡大版を表示するには、こちらをクリックしてください。
従来の(フィーダまたは細胞外マトリックス上の細胞の)コロニー型の文化やフィーダー6のない集合体としてhPSCsの懸濁培養:in vitroでの培養hPSCsには、2つの主要な方法があります。コロニー型とサスペンションの両方培養法の制限は累積異質と継承エピジェネティックな変化があります。 NCM培養物は、単一細胞継代及び高密度細胞播種の両方に基づいて、HPSC成長6,18のための新しい培養方法を表す。なお、種々の単一細胞継代方法は、文献に記載されているが、それらのどれも、ルーチン増殖のために使用されない。たとえば、呉らはHPSC成長19上の様々な小分子カクテルの効果を研究するために単一細胞継代方法を採用。しかしながら、それらの最終培養物はコロニーである。だから、低密度ベースの単一細胞継代方法はまだ植民地型文化に属している。 NCM文化に関しては、高隠れ家最終細胞生成物が均質な単層であるため、ITYメッキは、新しいメソッドにこの文化を変換します。最近では、ドヴォルザークらは総合的に、この成長条件の下で18 HPSC特性を分析するために同様の方法を使用していました。その結果はまた、当社の主要な結論をサポートしています。これは、NCMの文化は、いくつかの新しい特性を有する新たな方法であり、さらに、多能性幹細胞生物学の多くの潜在的なアプリケーションのために変更することができることが明らかになっている。
NCM培養からhPSCsの基本的なプロパティ
それはコロニー9,18として成長した細胞と同じ種類のNCM文化を共有し、多くの特性の下でhPSCsことが考えられる。 Oct-4の、NANOG、SSEA-3/4、TRA-1-60、TRA-1-81およびSSEA-1を含むhPSCsにおけるhESCのマーカーの発現レベルは、NCMおよびコロニー型培養物の両方に類似している。 NCM適応細胞はまた、M HPSC上に成長したコロニーに類似した全体的なmRNA発現パターンを保持するEFフィーダー層9。奇形腫アッセイ9,18によって決定された明らかに、NCMに適応した細胞が多能性状態を維持する。しかしながら、HPSCコロニーとは異なり、NCM条件下で細胞が一貫した成長曲線、細胞周期、細胞数9によって特徴付けられる予測可能な成長速度を有する。による高密度単一細胞めっきを、NCM条件下hPSCsことによりHPSCのMEF上で増殖させたコロニーと比較して4倍の細胞数を増加させる、2日目および4( 図1B)との間の指数関数的な成長を示す。長期の培養は、細胞産生を増加させず、むしろアポトーシスおよび分化応力9が増大する。 NCMはまた、このように解凍した細胞(プロトコル1)をめっきする際に迅速な細胞の回復を可能にし、最適な凍結保存を可能にします。また、NCMは、様々な異種非含有のプロトコル9にHPSC文化の適応を容易にします。一般的には、NCMは、hPSCsの成長をサポートする多能性状態を維持し、潜在を維持3胚葉の成体組織に分化するhPSCsのには必須の条件です。
NCMの下hPSCsにおける染色体の安定性
染色体安定性の点で、異なる培養方法からの細胞の間には直接の比較は存在しない。 G-バンディング、アレイベースの比較ゲノムハイブリダイゼーション(のaCGH)、および蛍光in situハイブリダイゼーション (FISH)9によって決定されるように我々のNCM培養条件下hPSCsの大部分は正常な核型および遺伝子コピー数を有する。二行(〜13%)が1行( すなわち 、WA09)はトリソミー20 9の細胞の14%を持っていた高架倍数性と別の1(ES01)を示している、異常な核型を示した。これは、これらの異常核型が誘導されたかどうかは不明である前NCM文化に変異した細胞を既存またはNCM適応の間に誘導の選択。それが始まるHPSCコロニーやコロニーのサブセットがNCM培養SHに使用することが重要ですNCM適応のための時間に自分の均質性および染色体安定性の点で十分に特徴付けられウルド。注目すべきことに、NCM条件下での異常な核型の速度は、作成者が優勢なコロニー型の培養条件の下で20は34%異常な核型を明らかにした、最近のコホート分析で報告されたものよりはるかに低い。したがって、我々の研究は、我々は、解離し、単細胞を増殖し、NCMの条件の下で彼らの染色体の安定性を維持できることを示しています。それにもかかわらず、我々はまた、今後数年間でhPSCsの染色体異常を調べるために、より高感度な方法を使用する必要があります。これらの頻繁に変化した染色体におけるいくつかの小さな病変( 例えば 、20q11.21アンプリコン)は、従来では検出できないように、特に、我々は、より高い解像度のプローブ( すなわち 、<50キロバイト)を用いて、染色体1、12、17、および20をスキャンする必要が染色体分析およびFISH 20〜22。さらに、多様なNCMプロトコールの開発はrobuを識別するために、私たちを可能にするSTおよび将来のアプリケーションのための安全な方法。
多様な変更の下で、NCM文化
ROCK阻害剤の使用、Y-27632は、単一細胞ベースのアッセイのためにドアを開いた。多様なROCK阻害剤の有効性は、hPSCsのNCMベースの拡大と凍結保存します( 図2)のための追加の選択肢を提供するであろう。理論的には、有意に単一細胞プレーティング効率を向上させることができる任意の小分子は、NCM培養を容易にするために使用することができる。それらの異なったROCK阻害剤から機能するJAK阻害剤1は、例えば9を表す。単一分子又はコンビナトリアルアプローチの使用は私達に最適な細胞増殖、細胞アッセイ、及びhPSCsの凍結保存を提供することができる。しかしながら、このような通常のhESC 23-25 において発現ラミニンアイソフォームLN-521のような定義された細胞外マトリックスタンパク質上の別のhPSCs NCM培養物は、小の干渉を排除することができる分子( 図3)。 LN-521は解離し、HPSCの生存率を向上させ、α6β1-PI3K/AKT経路24の活性化を介して多能性を維持可能性があります。 LN-521との継代hPSCsのシンプルさは、様々なフィーダーを含まない、完全に定義された培地(プロトコル4)を使用して、異種非含有細胞培養システムと互換性の細胞の不均一性を低減する。それはまた、小分子の影響を受けずに高スループットアッセイのための追加のモジュールを提供する。 LN-521上のNCMの文化の下の性IPSCはHPSCマーカーのパネルの発現を維持したが、奇形腫アッセイおよび胚様体媒介多系列分化を使用して、これらの細胞のさらなる特徴付けは、これらの細胞に多能性の状態を確認する必要があるかもしれない。注目すべきは、ラミニンアイソフォームLN-521上で培養hiPSCsは伝え細胞遺伝学的に安定した(http://biolamina.com/)です。しかし、我々はまた、(上述のように)電子を高解像度かつ高感度の方法を適用する必要がこれらの細胞における染色体の安定性をxamine。
遺伝子工学のためのNCMの文化の多様性
NCMに基づく方法hPSCs(プロトコル5-7)の遺伝子操作のために特に有用である、シンプルな堅牢かつ経済的なシステムを表しています。これは、hESCコロニーは、異なる研究所間で26-28トランスフェクション/形質導入効率に大きな変動性、トランスフェクトまたは形質導入することが困難であることが知られている。例えば、ヒトES細胞におけるトランスフェクション効率は、3〜コロニー培養条件の下で26〜35%の範囲である。コロニー条件下BG01細胞におけるレンチウイルス形質導入信号は9極めて低いことが見出された。しかしながら、NCMによって媒介されるトランスフェクション効率が75%超であった9及び形質導入方法の変形例90〜28%までのレンチウイルス媒介性形質導入効率を増加させることができる。タイトな比較研究は、それが目であることを明らかにした低トランスフェクション効率9に貢献するhESCコロニー内の電子の多団体。さらに、我々は最近、マイクロRNAトランスフェクションプロトコールを変更し、レンチウイルス(プロトコル6および図4)を使用せずに高いトランスフェクション効率(〜91%)を達成することができている。 5日間の時間枠に - このプロトコルは、使いやすく、3内の一過性トランスフェクション実験のために特に有用である。我々は上記のプロトコルに記述されているように我々はhPSCsにトランスフェクション/形質導入効率を最適化する際に、複数の要因が配慮されるべきである。これらの因子は、細胞密度、プラスミド濃度、レンチウイルス力価を、感染多重度(MOI)、トランスフェクション/形質導入の持続時間、試薬の細胞毒性、および監視トランスフェクション/形質導入効率のために使用される方法が挙げられる。
私たちは、マトリゲル上で、定義された細胞外マトリックス上で培養hPSCsにNCM方法を詳しく説明して拡張します。この培養法一般HPSCコロニー凝集培養物中に見られる不均一性を排除する効率的な方法です。 NCMの成長条件下でヒト多能性幹細胞は、多能性および染色体安定である。この新規な培養系は、HPSCのメンテナンス、大規模な拡張、および遺伝子操作するための簡単で汎用性があります。
The authors declare that they have no competing financial interests.
This work was supported by the Intramural Research Program of the National Institutes of Health (NIH) at the National Institute of Neurological Disorders and Stroke. We would like to thank Dr. Ronald D. McKay for his discussion and comments on this project.
Name | Company | Catalog Number | Comments |
Countess automated cell counter | Invitrogen Inc. | C10227 | Automatic cell counting |
Faxitron Cabinet X-ray System | Faxitron X-ray Corporation, Wheeling, IL | Model RX-650 | X-ray irradiation of MEFs |
MULTIWELL 6-well plates | Becton Dickinson Labware | 353046 | Polystyrene plates |
DMEM | Invitrogen Inc. | 11965–092 | For MEF medium |
Mitomycin C | Roche | 107409 | Mitotic inhibitor |
Trypsin | Invitrogen Inc. | 25300-054 | For MEF dissociation |
DMEM/F12 | Invitrogen Inc. | 11330–032 | For hPSC medium |
Opti-MEM I Reduced Serum Medium | Invitrogen Inc. | 31985-062 | For hPSC transfection |
Heat-inactivated FBS | Invitrogen Inc. | 16000–044 | Component of MEF medium |
Knockout Serum Replacement | Invitrogen Inc. | 10828–028 | KSR, Component of hPSC medium |
Dulbecco’s Phosphate-Buffered Saline | Invitrogen Inc. | 14190-144 | D-PBS, free of Ca2+/Mg2+ |
Non-essential amino acids | Invitrogen | 11140–050 | NEAA, component of hPSC medium |
L-Glutamine | Invitrogen | 25030–081 | Component of hPSC medium |
mTeSR1 & Supplements | StemCell Technologies | 5850 | Animal protein-free |
TeSR2 & Supplements | StemCell Technologies | 5860 | Xeno-free medium |
β-mercaptoethanol | Sigma | M7522 | Component of hPSC medium |
MEF (CF-1) ATCC | American Type Culture Collection (ATCC) | SCRC-1040 | For feeder culture of hPSCs |
hESC-qualified Matrigel | BD Bioscience | 354277 | For feeder-free culture of hPSCs |
Laminin-521 | BioLamina | LN521-02 | Human recombinant protein |
FGF-2 (recombinant FGF, basic) | R&D Systems, MN | 223-FB | Growth factor in hPSC medium |
CryoStor CS10 | StemCell Technologies | 7930 | |
Accutase | Innovative Cell Technologies | AT-104 | 1X mixed enzymatic solution |
JAK inhibitor I | EMD4 Biosciences | 420099 | An inhibitor of Janus kinase |
Y-27632 | EMD4 Biosciences | 688000 | ROCK inhibitor |
Y-27632 | Stemgent | 04-0012 | ROCK inhibitor |
Y-39983 | Stemgent | 04-0029 | ROCK I inhibitor |
Phenylbenzodioxane | Stemgent | 04-0030 | ROCK II inhibitor |
Thiazovivin | Stemgent | 04-0017 | A novel ROCK inhibitor |
BD Falcon Cell Strainer | BD Bioscience | 352340 | 40 µm cell strainer |
Nalgene 5100-0001 Cryo 1 °C | Thermo Scientific | C6516F-1 | “Mr. Frosty” Freezing Container |
Lipofectamine 2000 | Invitrogen Inc. | 11668-027 | Transfection reagents |
DharmaFECT Duo | Thermo Scientific | T-2010-02 | Transfection reagent |
Non-targeting miRIDIAN miRNA Transfection Control | Thermo Scientific | IP-004500-01-05 | Labeled with Dy547, to monitor the delivery of microRNAs |
SMART-shRNA | Thermo Scientific | To be determined | Lentiviral vector |
pmaxGFP | amaxa Inc (Lonza) | Included in every transfection kit | Expression plasmid for transfection control |
Oct-4 | Santa Cruz Biotechnology | sc-5279 | Mouse IgG2b, pluripotent marker |
SSEA-1 | Santa Cruz Biotechnology | sc-21702 | Mouse IgM, differentiation marker |
SSEA-4 | Santa Cruz Biotechnology | sc-21704 | Mouse IgG3, pluripotent marker |
Tra-1-60 | Santa Cruz Biotechnology | sc-21705 | Mouse IgM, pluripotent marker |
Tra-1-81 | Santa Cruz Biotechnology | sc-21706 | Mouse IgM, pluripotent marker |
CK8 (C51) | Santa Cruz Biotechnology | sc-8020 | Mouse IgG1, against cytokeratin 8 |
α-fetoprotein | Santa Cruz Biotechnology | sc-8399 | AFP, mouse IgG2a |
HNF-3β (P-19) | Santa Cruz Biotechnology | sc-9187 | FOXA2, goat polyclonal antibody |
Troponin T (Av-1) | Thermo Scientific | MS-295-P0 | Mouse IgG1 |
Desmin | Thermo Scientific | RB-9014-P1 | Rabbit IgG |
Anti-NANOG | ReproCELL Inc, Japan | RCAB0004P-F | Polyclonal antibody |
Rat anti-GFAP | Zymed | 13-0300 | Glial fibrillary acidic protein |
Albumin (clone HSA1/25.1.3) | Cedarlane Laboratories Ltd. | CL2513A | Mouse IgG1 |
Smooth muscle actin (clone 1A4) | DakoCytomation Inc | IR611/IS611 | Mouse IgG2a |
Nestin | Chemicon International | MAB5326 | Rabbit polyclonal antibody |
TUBB3 | Convance Inc | MMS-435P | Tuj1, mouse IgG2a |
HNF4α (C11F12) | Cell Signaling Technologies | 3113 | Rabbit monoclonal antibody |
Paraformaldehyde (solution) | Electron Microscopy Sciences | 15710 | PFA, fixative, diluted in D-PBS |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved